+7 (495) 720-06-54
Пн-пт: с 9:00 до 21:00, сб-вс: 10:00-18:00
Мы принимаем он-лайн заказы 24 часа*
 

Гидравлические системы это: Гидравлические системы, общие сведения, контуры и компоненты.

0

Гидросистема | это… Что такое Гидросистема?

Гидросистема (гидрасистема) (сокр. от гидравлическая система) — это совокупность элементов, воздействующих на текучую среду таким образом, что свойства каждого элемента оказывают влияние на состояние текучей среды во всех элементах системы[1].

В отношении проблем, связанных с проектированием и контролем гидросистем, существует понятие гидравлическая цепь, введенное академиком А.П. Меренковым[2].

Данное определение гидросистем фактически подчеркивает взаимосвязь свойств множества элементов посредством текучей среды, что вытекает из определения — система, т.е. единой сущности, объединяющей множество элементов по каким-либо критериям.

Различают природные и технические гидросистемы. Примерами сложных технических гидросистем являются системы сбора и подготовки нефти и газа, водо- и газоснабжения, канализации, ирригационных каналов и т.п. К Природным гидросистемам можно отнести системы продуктивных пластов, насыщенных водой, газом, газоконденсатом или нефтью.

Несмотря на разнообразие гидросистем, отличающихся назначением, структурой, гидравлическими и размерными характеристиками, по мнению многих авторов[1][2], все они содержат одни и те же элементы.

Накопители текучей среды — замкнутые объёмы естественного и искусственного происхождения, служащие для вмещения текучей среды и придающие ей относительно стабильный энергетический потенциал. Они характеризуются пренебрежимо малыми скоростями течения жидкости и газа, которые не влияют на функционирование рассматриваемой системы. К данным элементам следует относить различные емкости, водохранилища, моря, озера, реки, пористые пласты, атмосферу и т.п., которые являются оконечными для рассматриваемой гидросистемы. В рамках выбранной гидросистемы они могут служить как источником, так и приемником текучей среды.

Аппараты для сообщения или поглощения энергии текучей среды — аппараты, служащие для целенаправленного преобразования различных видов энергий в энергию текучей среды и наоборот: энергии текучей среды в другие виды энергий.

Устройства по управлению потоком текучей среды — устройства, служащие для изменения гидравлических параметров и направления перемещения потока. Этими устройствами являются задвижки, клапаны, распределители потоков, штуцеры, регуляторы расхода и давления и т.п.

Каналы связи – сооружения, необходимые для обеспечения направленного движения текучей среды от одного элемента гидросистем к другому. Каналами связи могут быть как открытые каналы ирригационных систем, так и закрытые трубопроводы, служащие единой цели: пропусканию сквозь себя потока текучей среды для обеспечения связи других элементов (УУ, АСП, НТС) рабочей средой.

Приборы для регистрации параметров текучей среды — устройства, предназначенные для контроля параметров потока текучей среды.

Основной проблемой, связывающей всю массу гидросистем, является расчёт параметров потоков текучей среды(или нескольких сред) в гидросистемах сетевой структуры с большим количеством элементов, которые различным образом изменяют свойства сред и их энергетические показатели.

Наиболее известными программными продуктами для моделирования, контроля и управления гидросистем являются Eclipse, Tempest, TimeZYX для гидросистем продуктивных пластов и PipeSim, «Экстра»[3], HydraSym[4], OisPipe, «Гидросистема» для технических и смешанных (объединяющих природные и технические гидросистемы) гидросистем.

Примечания

  1. 1 2 Источник литературы 1
  2. 1 2 Источник литературы 2
  3. Вебсайт ПО «Экстра»
  4. Сайт НИИ ПО «ГидраСим»

Литература

1. А.В. Стрекалов. Математические модели гидравлических систем для управления системами поддержания пластового давления. Тюмень, 2007. ОАО Тюменский дом печати. 664 с.

2. Меренков А.П., Хасилев В.Я. «Теория гидравлических цепей». – Н.,1985, 276 с.

Гидравлические системы и компоненты

Гидравлические системы — это компоненты или оборудование, которые используют жидкость или точнее, энергию жидкости для выполнения специфической задачи. С помощью компонентов гидравлической системы, жидкость сжимается до высокого давления и далее передаётся к различным приводам через механизмы.

Компания Yuken Kogyo является ведущим производителем и предлагает различные типы гидравлических систем высокого качества и с топовыми характеристиками.

Гидравлические насосы — довольно простое конструктивно и несложное в использовании оборудование, которое преобразует механическую энергию в энергию гидравлической жидкости. Насосы такого типа широко востребованы и способны прокачивать большое количество масла через гидравлические цилиндры / гидравлические моторы.

Группа «Энерпром-Микуни» является поставщиком гидравлических насосов Yuken Kogyo с 2004 года и поставляет насосы различного типа с разными конфигурациями, рабочими характеристиками и структурой, исполнением, такие как лопастные насосы переменного рабочего объёма, поршневые насосы, шестерённые насосы, ручного действия, однокамерные насосы и многие другие. Насосы ручного действия более портативные, поскольку не требуют дополнительного источника энергии. Подобные насосы с интенсивными затратами ручного труда идеальны для нерегулярных, случающихся время от времени задач. Другие виды насосов приводятся в действие сжатым воздухом, электричеством или другими источниками энергии.

Основной принцип, лежащий в основе действия гидравлических механизмов, то что сила сжатия в одной точке, передается в другую точку с использованием сжатой жидкости, обычно масла. Поршень в цилиндре — это наиболее полезный элемент насоса, который прилагая давление к маслу далее передаёт это давление другому поршню, который, в свою очередь выполняет полезную работу для пользователя [системы]. Масло не должно содержать пузырьков воздуха, так как если пузырьки воздуха присутствуют при использовании поршня, это может приводить к высоким потерям энергии расходуемой на сжатие этих самых пузырьков, вместо того, чтобы быть использованной на приведение в движение другого поршня. Поэтому по мере эксплуатации и износа гидравлических компонентов важно, чтобы в результате износа не допускалось подмешивание воздуха в гидравлическую систему.

Гидравлические моторы — это наиболее ценные гидравлические компоненты механизмов, соединяемые с насосом, рукавами, схемой, металлическими трубами, фильтрами и другими необходимыми частями. В наши дни, гидромоторы играют решающую роль во работе многих промышленных систем и в других применениях. Тому что гидравлические моторы находят применение во всё большем и большем количестве секторов в последние годы, есть причина.

В основном, гидравлические моторы — это механизмы, вращающие стержень, преобразующий гидравлическую энергию в механическую энергию. Вращение производится под действием гидравлического потока и давления. Энергия, вырабатываемая таким мотором, определяется потоком и перепадом давления. В то время как вырабатываемый крутящий момент определяется перепадом давления и рабочим объёмом гидравлического мотора. Пользователь имеет множество возможных вариантов использования мотора, таких, например, как приводы кранов, экскаваторов, приводы перемешивающих устройств, гидравлических лебёдок, вальцовочных станков и во многих других сферах. Лучше всего характеризует гидравлические моторы то, что они меньше загрязняют окружающую среду и обеспечивают практически пожизненное функционирование с гораздо меньшей стоимостью обслуживания.

Кроме гидравлических насосов и моторов, в состав гидравлических систем входит множество прочих компонентов, такие как управляющие клапаны, прессы, цилиндры, рукава высокого давления, и многие другие, рассмотрим их в последующих статьях.

Что такое гидравлика?

К

  • Кэти Террелл Ханна

Что такое гидравлика?

Гидравлика — это механическая функция, работающая за счет силы давления жидкости.

В системах, основанных на гидравлике, механическое движение создается содержащейся перекачиваемой жидкостью, как правило, посредством гидравлических цилиндров, перемещающих поршни.

Гидравлика является компонентом мехатроники, который сочетает в себе механическую, электронную и программную инженерию для проектирования и производства продуктов и процессов.

Кто изобрел гидравлику?

Трудно сказать, кто именно изобрел гидравлику. Однако использование систем на основе гидравлики можно проследить вплоть до 1 века.

Блез Паскаль, французский физик, математик, изобретатель, философ и теолог, добился выдающихся достижений в области гидростатики и гидродинамики, и ему приписывают изобретение первого гидравлического пресса, который использовал гидравлическое давление для увеличения силы.

Кроме того, он изобрел закон Паскаля или принцип гидростатики Паскаля, который гласит, что жидкость, находящаяся в состоянии покоя в закрытом сосуде, может претерпевать изменения высокого давления без потерь для каждой порции жидкости и стенок сосуда.

Как работают гидравлические системы?

Современные системы включают в себя гидравлические компоненты, такие как приводы, шланги, акведуки и ирригационные системы, которые подают воду, используя гравитацию для создания давления воды.

Эти системы в основном используют свойства воды, чтобы заставить ее доставлять себя.

Умножение силы можно создать, используя цилиндр меньшего диаметра для толкания большего поршня в большем цилиндре. Часто будет много поршней.

Гидравлические насосы всех типов нагнетают жидкости (как правило, гидравлические масла), перемещая поршень через цилиндр и управляющие клапаны для контроля расхода жидкости и масла.

Гидравлические системы обычно создают механическое движение, перекачивая жидкость, содержащуюся в гидравлических цилиндрах, с помощью движущихся поршней.

Каковы области применения гидравлических систем?

Существует множество областей применения гидравлических систем.

Гидравлика широко используется в автомобильной промышленности для всего, от тормозных систем до гидроусилителя руля. Однако они также используются в строительном оборудовании, производственных машинах и самолетах.

Гидравлика настолько вездесуща, что вы, вероятно, взаимодействуете с гидравлическими системами много раз в течение дня, даже не осознавая этого.

Примеры гидравлического оборудования

Теперь давайте рассмотрим несколько примеров гидравлического оборудования.

Дровоколы

Дровокол представляет собой однопоршневую гидравлическую машину, которая использует клапан на обоих концах цилиндра для перемещения поршней с помощью жидкости под давлением, приводя в движение клин, чтобы разделить древесину на более мелкие части и вернуться в исходное положение.

Экскаваторы-погрузчики

Промышленное оборудование, такое как экскаватор-погрузчик, часто использует несколько цилиндров для перемещения различных частей. Электронное управление обычно используется для этих более сложных установок на большом и мощном оборудовании.

Гидравлическая система обратной лопаты управляет ковшом, рукоятью и выдвижной стрелой.

Автовышки
Автовышки

, также известные как сборщики вишни, используют гидравлику для подъема и опускания оператора в ковше для работы на высоких линиях или в других возвышенных местах. Гидравлическая система также может использоваться для вращения ковша.

Как видите, гидравлические системы имеют широкий спектр применения в различных отраслях промышленности.

Гидравлика и пневматические системы

Гидравлика по функциям аналогична пневматической системе. Обе системы используют энергию жидкости под давлением, но гидравлика использует жидкости, а не газы, в отличие от пневматики.

Гидравлические системы способны выдерживать более значительные давления: до 10 000 фунтов на квадратный дюйм (psi) по сравнению с примерно 100 psi в пневматических системах.

Это давление обусловлено несжимаемостью жидкостей, что обеспечивает более значительную передачу мощности с повышенной эффективностью, поскольку энергия не теряется при сжатии, за исключением случаев, когда воздух попадает в гидравлические линии. Гидравлические жидкости могут также смазывать, охлаждать и передавать гидравлическую мощность.

Пневматика, будучи менее многогранной, требует отдельной смазки маслом, что может привести к беспорядку из-за давления воздуха.

Пневматика более проста по конструкции и управлению и безопаснее — с меньшим риском возгорания — отчасти потому, что сжимаемость газопоглощающего амортизатора может защитить механизм.

См. также: паскаль , газовая постоянная и коробка отбора мощности

Последнее обновление: май 2022 г.

Продолжить чтение о гидравлике
  • Как датчики IoT помогают авиационной отрасли?
  • Современные интеллектуальные системы для нефтегазовых операций
  • Общие сведения об угрозах АСУ ТП и текущей ситуации
  • Как превратить данные IoT в торгуемый актив
  • Вторичная сеть: что это такое и как мы ею управляем?
управление мобильными устройствами
Программное обеспечение

для управления мобильными устройствами (MDM) позволяет ИТ-администраторам контролировать, защищать и применять политики на смартфонах, планшетах и ​​других конечных устройствах.

Сеть

  • коаксиальный кабель

    Коаксиальный кабель — это тип медного кабеля, специально изготовленного с металлическим экраном и другими компонентами, предназначенными для блокирования сигнала …

  • мегагерц (МГц)

    Мегагерц (МГц) — это множитель, равный одному миллиону герц (106 Гц). Герц — стандартная единица измерения частоты в …

  • Стандарты беспроводной связи IEEE 802

    IEEE 802 — это набор сетевых стандартов, которые охватывают спецификации физического уровня и уровня канала передачи данных для таких технологий, как…

Безопасность

  • SOAR (организация безопасности, автоматизация и реагирование)

    Управление безопасностью, автоматизация и реагирование, или SOAR, представляет собой набор совместимых программ, который позволяет организации. ..

  • цифровая подпись

    Цифровая подпись — это математический метод, используемый для проверки подлинности и целостности сообщения, программного обеспечения или цифрового…

  • судо (су ‘делать’)

    Sudo — это утилита командной строки для Unix и операционных систем на базе Unix, таких как Linux и macOS.

ИТ-директор

  • хорошие навыки

    Твердые навыки — это определенные способности, способности и наборы навыков, которыми человек может обладать и демонстрировать взвешенно.

  • управление корпоративными проектами (EPM)

    Управление корпоративными проектами (EPM) представляет собой профессиональные практики, процессы и инструменты, используемые для управления несколькими …

  • Управление портфелем проектов: руководство для начинающих

    Управление портфелем проектов — это формальный подход, используемый организациями для выявления, определения приоритетов, координации и мониторинга проектов .

    ..

HRSoftware

  • пассивный кандидат

    Пассивный кандидат (пассивный кандидат на работу) — это любой работник, который не ищет работу активно.

  • проверка сотрудников

    Проверка сотрудников — это процесс проверки, проводимый работодателями для проверки биографических данных и проверки информации о новом…

  • Эффект хоторна

    Эффект Хоторна — это изменение поведения участников исследования в ответ на их знание о том, что они …

Служба поддержки клиентов

  • квалифицированный маркетолог лид (MQL)

    Квалифицированный маркетолог (MQL) — это посетитель веб-сайта, уровень вовлеченности которого указывает на то, что он может стать клиентом.

  • автоматизация маркетинга

    Автоматизация маркетинга — это тип программного обеспечения, которое позволяет компаниям эффективно ориентироваться на клиентов с помощью автоматизированного маркетинга . ..

  • успех клиента

    Успех клиента — это стратегия, направленная на то, чтобы продукция компании соответствовала потребностям клиента.

Гидравлические системы и выбор жидкости

Только в начале промышленной революции британский механик по имени Джозеф Брама применил принцип закона Паскаля при разработке первого гидравлического пресса. В 1795 году он запатентовал свой гидравлический пресс, известный как пресс Брама. Брама полагал, что если небольшая сила на небольшой площади создаст пропорционально большую силу на большей площади, единственным ограничением силы, которую может приложить машина, является площадь, на которую воздействует давление.

Что такое гидравлическая система?

Гидравлические системы сегодня можно найти в самых разных областях, от небольших сборочных процессов до комплексных применений на сталелитейных и бумажных фабриках. Гидравлика позволяет оператору выполнять значительную работу (подъем тяжестей, вращение вала, сверление прецизионных отверстий и т. д.) с минимальными затратами на механическую связь благодаря применению закона Паскаля, который гласит:

«Давление, приложенное к замкнутой жидкости в любой точке, передается без уменьшения по всей жидкости во всех направлениях и действует на каждую часть ограничивающего сосуда под прямым углом к ​​его внутренним поверхностям и одинаково на равных площадях (рис. 1)».

Рисунок 1 – Закон Паскаля

Применяя закон Паскаля и его применение Брахмой, становится очевидным, что приложенная сила в 100 фунтов на 10 квадратных дюймов создаст давление 10 фунтов на квадратный дюйм во всем замкнутом сосуде. Это давление будет поддерживать вес в 1000 фунтов, если площадь веса составляет 100 квадратных дюймов.

Принцип закона Паскаля реализуется в гидравлической системе с помощью гидравлической жидкости, которая используется для передачи энергии от одной точки к другой. Поскольку гидравлическая жидкость практически несжимаема, она способна мгновенно передавать мощность.

Компоненты гидравлической системы

Основными компонентами, составляющими гидравлическую систему, являются резервуар, насос, клапан(ы) и привод(ы) (двигатель, цилиндр и т. д.).

Резервуар
Назначение гидравлического резервуара состоит в том, чтобы удерживать объем жидкости, отводить тепло от системы, позволять твердым загрязнениям оседать и способствовать выпуску воздуха и влаги из жидкости.

Насос
Гидравлический насос преобразует механическую энергию в гидравлическую. Это делается за счет движения жидкости, которая является передающей средой. Существует несколько типов гидравлических насосов, включая шестеренчатые, лопастные и поршневые. Все эти насосы имеют разные подтипы, предназначенные для конкретных применений, таких как поршневой насос с изогнутой осью или лопастной насос переменной производительности. Все гидравлические насосы работают по одному и тому же принципу, который заключается в перемещении объема жидкости против сопротивления нагрузки или давления.

Клапаны
Гидравлические клапаны используются в системе для запуска, остановки и направления потока жидкости. Гидравлические клапаны состоят из тарелок или золотников и могут приводиться в действие с помощью пневматических, гидравлических, электрических, ручных или механических средств.

Приводы
Гидравлические приводы являются конечным результатом закона Паскаля. Здесь гидравлическая энергия преобразуется обратно в механическую энергию. Это можно сделать с помощью гидравлического цилиндра, который преобразует гидравлическую энергию в линейное движение и работу, или гидравлического двигателя, который преобразует гидравлическую энергию во вращательное движение и работу. Как и в случае с гидравлическими насосами, гидравлические цилиндры и гидромоторы имеют несколько различных подтипов, каждый из которых предназначен для конкретных конструктивных применений.

Основные смазываемые гидравлические компоненты

В гидравлической системе есть несколько компонентов, которые считаются жизненно важными из-за стоимости ремонта или важности задачи, включая насосы и клапаны. Несколько различных конфигураций насосов необходимо рассматривать отдельно с точки зрения смазки. Однако, независимо от конфигурации насоса, выбранный смазочный материал должен препятствовать коррозии, соответствовать требованиям по вязкости, обладать термической стабильностью и быть легко идентифицируемым (в случае утечки).

Лопастные насосы
Существует множество вариантов лопастных насосов разных производителей. Все они работают по схожим принципам проектирования. Щелевой ротор соединен с приводным валом и вращается внутри кулачкового кольца, смещенного или эксцентричного по отношению к приводному валу. Лопасти вставляются в пазы ротора и следуют за внутренней поверхностью кулачкового кольца при вращении ротора.

Лопасти и внутренняя поверхность кулачковых колец всегда соприкасаются и подвержены сильному износу. По мере износа двух поверхностей лопасти выходят из своего паза. Лопастные насосы обеспечивают стабильный поток при высокой стоимости. Лопастные насосы работают в нормальном диапазоне вязкости от 14 до 160 сСт при рабочей температуре. Лопастные насосы могут не подходить для ответственных гидравлических систем высокого давления, где трудно контролировать загрязнение и качество жидкости. Эффективность противоизносной присадки к жидкости, как правило, очень важна для лопастных насосов.

Поршневые насосы
Как и все гидравлические насосы, поршневые насосы доступны в конструкциях с фиксированным и переменным рабочим объемом. Поршневые насосы, как правило, являются наиболее универсальным и прочным типом насосов и предлагают ряд вариантов для любого типа системы. Поршневые насосы могут работать при давлении выше 6000 фунтов на квадратный дюйм, очень эффективны и производят сравнительно мало шума. Многие конструкции поршневых насосов также имеют тенденцию противостоять износу лучше, чем другие типы насосов. Поршневые насосы работают в диапазоне нормальной вязкости жидкости от 10 до 160 сСт.

Шестеренчатые насосы
Существует два распространенных типа шестеренчатых насосов: внутренние и внешние. Каждый тип имеет множество подтипов, но все они развивают поток, перенося жидкость между зубьями зубчатого зацепления. Шестеренчатые насосы, как правило, менее эффективны, чем лопастные и поршневые, но часто более устойчивы к загрязнению жидкости.

  1. Шестеренчатые насосы с внутренним зацеплением создают давление от 3000 до 3500 фунтов на квадратный дюйм. Эти типы насосов предлагают широкий диапазон вязкости до 2200 сСт, в зависимости от расхода и, как правило, работают тихо. Шестеренчатые насосы с внутренним зацеплением также обладают высокой эффективностью даже при низкой вязкости жидкости.

  2. Насосы с внешним зацеплением распространены и могут выдерживать давление от 3000 до 3500 фунтов на квадратный дюйм. Эти шестеренчатые насосы обеспечивают недорогую подачу в систему со средним давлением, средним объемом и фиксированным положением. Диапазоны вязкости для этих типов насосов не превышают 300 сСт.

Гидравлические жидкости
Современные гидравлические жидкости служат нескольким целям. Основной функцией гидравлической жидкости является обеспечение передачи энергии через систему, которая позволяет выполнять работу и движение. Гидравлические жидкости также отвечают за смазку, теплопередачу и контроль загрязнения. При выборе смазочного материала учитывайте вязкость, совместимость с уплотнениями, базовое масло и пакет присадок. На сегодняшний день на рынке представлены три основных разновидности гидравлических жидкостей: на нефтяной основе, на водной основе и на синтетической основе.

  1. Жидкости на нефтяной или минеральной основе в настоящее время являются наиболее широко используемыми жидкостями. Эти жидкости предлагают недорогой, высококачественный и легко доступный выбор. Свойства жидкости на минеральной основе зависят от используемых присадок, качества исходной сырой нефти и процесса очистки. Присадки в жидкости на минеральной основе обеспечивают ряд специфических эксплуатационных характеристик. Обычные присадки к гидравлическим жидкостям включают ингибиторы ржавчины и окисления (R&O), антикоррозионные присадки, деэмульгаторы, противоизносные (AW) и противозадирные (EP) присадки, присадки для улучшения индекса вязкости и пеногасители. Кроме того, некоторые из этих смазочных материалов содержат цветные красители, что позволяет легко определять утечки. Поскольку гидравлические утечки очень дороги (и распространены), эта незначительная характеристика играет огромную роль в продлении срока службы вашего оборудования и экономии денег и ресурсов вашего предприятия.

  2. Жидкости на водной основе используются для обеспечения огнестойкости из-за высокого содержания воды. Они доступны в виде эмульсий масло-в-воде, эмульсий вода-в-масле (обратных) и водно-гликолевых смесей. Жидкости на водной основе могут обеспечить подходящие смазочные характеристики, но их необходимо тщательно контролировать, чтобы избежать проблем. Поскольку жидкости на водной основе используются там, где требуется огнестойкость, эти системы и атмосфера вокруг них могут быть горячими.

    Повышенные температуры вызывают испарение воды из жидкостей, что приводит к повышению вязкости. Иногда в систему необходимо добавлять дистиллированную воду, чтобы скорректировать баланс жидкости. Всякий раз, когда используются эти жидкости, несколько компонентов системы должны быть проверены на совместимость, включая насосы, фильтры, водопровод, фитинги и уплотнительные материалы.

    Жидкости на водной основе могут быть более дорогими, чем обычные жидкости на нефтяной основе, и иметь другие недостатки (например, более низкую износостойкость), которые необходимо сопоставлять с преимуществом огнестойкости.

  3. Синтетические жидкости представляют собой искусственные смазочные материалы, и многие из них обладают превосходными смазывающими свойствами в системах высокого давления и высоких температур. Некоторые из преимуществ синтетических жидкостей могут включать огнестойкость (эфиры фосфорной кислоты), более низкое трение, естественные моющие свойства (органические сложные эфиры и синтетические углеводородные жидкости с улучшенным содержанием сложных эфиров) и термическую стабильность.

    Недостатком этих типов жидкостей является то, что они обычно дороже обычных жидкостей, могут быть слегка токсичными и требуют специальной утилизации, а также часто несовместимы со стандартными материалами уплотнений.

Свойства жидкости
При выборе гидравлической жидкости учитывайте следующие характеристики: вязкость, индекс вязкости, устойчивость к окислению и износостойкость. Эти характеристики будут определять, как ваша жидкость работает в вашей системе. Проверка свойств жидкости проводится в соответствии с требованиями Американского общества испытаний и материалов (ASTM) или других признанных организаций по стандартизации.

  1. Вязкость (ASTM D445-97) является мерой сопротивления жидкости течению и сдвигу. Жидкость с более высокой вязкостью будет течь с большим сопротивлением по сравнению с жидкостью с низкой вязкостью. Чрезмерно высокая вязкость может способствовать повышению температуры жидкости и увеличению потребления энергии. Слишком высокая или слишком низкая вязкость может повредить систему и, следовательно, является ключевым фактором при выборе гидравлической жидкости.

  2. Индекс вязкости (ASTM D2270) — это то, как вязкость жидкости изменяется при изменении температуры. Жидкость с высоким индексом вязкости будет сохранять свою вязкость в более широком диапазоне температур, чем жидкость с низким индексом вязкости того же веса. Жидкости с высоким индексом вязкости используются там, где ожидаются экстремальные температуры. Это особенно важно для гидравлических систем, работающих вне помещений.

  3. Окислительная стабильность (ASTM D2272 и другие) — это устойчивость жидкости к термическому разложению, вызванному химической реакцией с кислородом. Окисление значительно сокращает срок службы жидкости, оставляя побочные продукты, такие как шлам и лак. Лак мешает работе клапана и может сужать пути потока.

  4. Износостойкость (ASTM D2266 и др.) — способность смазки снижать скорость изнашивания в граничных фрикционных контактах. Это достигается за счет того, что жидкость образует на металлических поверхностях защитную пленку, предотвращающую истирание, истирание и контактную усталость на поверхностях компонентов.

Помимо этих фундаментальных характеристик, еще одним свойством, которое следует учитывать, является видимость. Если когда-нибудь произойдет утечка в гидравлической системе, вы должны обнаружить ее как можно раньше, чтобы не повредить свое оборудование. Выбор окрашенной смазки может помочь вам быстро обнаружить утечки, эффективно спасая ваше предприятие от поломки оборудования.

Десять шагов для проверки оптимального диапазона вязкости

При выборе смазочных материалов убедитесь, что они эффективно работают при рабочих параметрах системного насоса или двигателя. Полезно иметь определенную процедуру для выполнения процесса. Рассмотрим простую систему с шестеренчатым насосом постоянного рабочего объема, который приводит в движение цилиндр (рис. 2).

  1. Соберите все необходимые данные для насоса. Сюда входит получение от производителя всех конструктивных ограничений и оптимальных рабочих характеристик. Вам нужен оптимальный диапазон рабочей вязкости для данного насоса. Минимальная вязкость 13 сСт, максимальная вязкость 54 сСт, оптимальная вязкость 23 сСт.

  2. Проверьте фактическую рабочую температуру насоса во время нормальной работы. Этот шаг чрезвычайно важен, потому что он дает точку отсчета для сравнения различных жидкостей во время работы. Насос нормально работает на 92ºС.

  3. Соберите температурно-вязкостные характеристики используемого смазочного материала. Рекомендуется использовать систему оценки вязкости ISO (сСт при 40ºC и 100ºC). Вязкость составляет 32 сСт при 40ºC и 5,1 сСт при 100ºC.

  4. Получите стандартную диаграмму вязкости-температуры ASTM D341 для жидких нефтепродуктов. Эта таблица довольно распространена, ее можно найти в большинстве руководств по промышленным смазочным материалам (рис. 3) или у поставщиков смазочных материалов.

  5. Используя характеристики вязкости смазочного материала, полученные на шаге 3, начните с оси температуры (ось x) диаграммы и прокручивайте ее, пока не найдете линию 40 градусов C. На линии 40°C двигайтесь вверх, пока не найдете линию, соответствующую вязкости вашего смазочного материала при 40°C, как указано производителем вашего смазочного материала. Когда вы найдете соответствующую линию, сделайте небольшую отметку на пересечении двух линий (красные линии, рис. 5).

  6. Повторите шаг 5 для свойств смазки при 100ºC и отметьте точку пересечения (темно-синяя линия, рис. 5).

  7. Соедините метки, проведя через них линию линейкой (желтая линия, рис. 5). Эта линия представляет собой вязкость смазки в диапазоне температур.

  8. Используя данные производителя для оптимальной рабочей вязкости насоса, найдите значение на вертикальной оси вязкости диаграммы. Нарисуйте горизонтальную линию на странице, пока она не совпадет с желтой линией зависимости вязкости от температуры смазочного материала. Теперь проведите вертикальную линию (зеленая линия, рис. 5) к нижней части графика от желтой линии зависимости вязкости от температуры в том месте, где она пересекается с горизонтальной линией оптимальной вязкости. Там, где эта линия пересекается, температурная ось представляет собой оптимальную рабочую температуру насоса для данного конкретного смазочного материала (69ºС).

  9. Повторите шаг 8 для максимальной непрерывной и минимальной непрерывной вязкости насоса (коричневые линии, рис. 5). Область между минимальной и максимальной температурами является минимальной и максимальной допустимой рабочей температурой насоса для выбранного смазочного продукта.

  10. Найдите нормальную рабочую температуру насоса на графике, используя сканирование тепловой пушки, выполненное на шаге 2. Если значение находится в пределах минимальной и максимальной температуры, указанных на графике, жидкость пригодна для использования в системе. Если это не так, вы должны заменить жидкость на более высокую или более низкую вязкость соответственно. Как показано на диаграмме, нормальные рабочие условия насоса выходят за пределы подходящего диапазона (коричневая область, рис. 5) для нашего конкретного смазочного материала и должны быть изменены.

Консолидация гидравлических жидкостей

Цель консолидации гидравлической жидкости состоит в том, чтобы уменьшить сложность и объем складских запасов. Необходимо соблюдать осторожность при рассмотрении всех критических характеристик жидкости, необходимых для каждой системы. Следовательно, консолидация жидкости должна начинаться на системном уровне. При объединении жидкостей учитывайте следующее:

  • Определите конкретные требования к каждой единице оборудования. Учитывайте все нормальные эксплуатационные ограничения вашего оборудования.

  • Поговорите с вашим представителем по смазочным материалам. Вы можете собирать и передавать важную информацию о потребностях вашего оборудования в смазке. Это гарантирует, что у вашего поставщика есть все продукты, которые вам нужны. Не жертвуйте системными требованиями ради консолидации.

Кроме того, соблюдайте следующие правила обращения с гидравлической жидкостью.

  • Внедрите процедуру маркировки всех поступающих смазочных материалов и маркировки всех резервуаров. Это сведет к минимуму перекрестное загрязнение и обеспечит выполнение критических требований к производительности.

  • Используйте метод FIFO (первый пришел — первый ушел) на складе смазочных материалов. Правильно реализованная система FIFO уменьшает путаницу и отказы смазочных материалов, вызванные хранением.

Гидравлические системы представляют собой сложные системы на основе жидкости для передачи энергии и преобразования этой энергии в полезную работу. Успешная работа гидравлической системы требует тщательного выбора гидравлических жидкостей, отвечающих требованиям системы. Выбор вязкости имеет решающее значение для правильного выбора жидкости.

Есть и другие важные параметры, которые следует учитывать, включая индекс вязкости, износостойкость и стойкость к окислению. Жидкости часто можно консолидировать, чтобы уменьшить сложность и стоимость хранения материалов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены. Карта сайта