КОМПРЕССОР | Авиация — коммерческая, гражданская, спецавиация…
НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ
ЦЕНТРОБЕЖНОГО КОМПРЕССОРА
Компрессор газотурбинного двигателя предназначен для сжатия воздуха и подачи его в камеру сгорания. Сжатие воздуха необходимо для более полного преобразования подводимого в камеру сгорания тепла в кинетическую энергию газового потока. Это наглядно видно из формулы, выражающей зависимость термического коэффициента полезного действия двигателя (щ) от степени повышения давления компрессора
к—1
тц=1 —Лк к,
где лк — степень повышения давления в компрессоре; к — показатель адиабаты.
Анализ формулы показывает, что при отсутствии сжатия (лк=1) термический КПД равен нулю и, следовательно, введенное в двигатель тепло в результате сгорания топлива не идет на увеличение кинетической энергии газа. С увеличением степени повышения давления повышается термический КПД, возрастает эффективность использования подводимого в двигатель тепла. Поэтому одним из основных требований, предъявляемых к компрессорам, наряду с требованиями обеспечения надежной и устойчивой работы на всех эксплуатационных* режимах, предъявляются требования обеспечить возможность получения больших степеней сжатия при малой массе и габаритах.
Возможность удовлетворения этих требований в значительной степени определяется конструкцией компрессора. По конструкции компрессоры современных авиационных двигателей разделяются на два типа: центробежные и осевые.
Центробежные компрессоры имеют целый ряд преимуществ перед осевыми: простота конструкции и малая трудоемкость в изготовлении, удовлетворительная характеристика при переменных режимах работы, возможность получения больших степеней повышения давления в одной ступени (яСт = 3…6).
Основные недостатки центробежных компрессоров по сравнению с осевыми — меньший КПД, небольшая пропускная способность и большие габаритные размеры в поперечном направлении.
Осевые компрессоры имеют более высокий коэффициент полезного действия, большую пропускную способность, выполняются многоступенчатыми, а потому имеют более высокую степень повышения давления и, следовательно, более высокий КПД, однако они более сложны и дороги в изготовлении, менее устойчивы в газодинамическом отношении и менее надежны в эксплуатации.
Высокая надежность, простота конструкции и большая газодинамическая устойчивость предопределили использование на двигателе М701 центробежного компрессора.
Центробежный компрессор (рис. 85) состоит из ротора и статора. Лопатки вращающегося направляющего аппарата (воздухозаборника) совместно с лопатками рабочего колеса образуют межлопаточные каналы и вместе с корпусом — проточную часть компрессора.
Рабочее колесо с вращающимся направляющим аппаратом (ВНА) и валом образуют ротор компрессора, а корпус компрессора с диффузором — его статор. Вращающийся направляющий аппарат — это спрофилированный лопаточный венец, обеспечивающий безударный вход воздуха на лопатки рабочего колеса.
На входе во ВНА величина и направление относительной скорости W определяются величинами абсолютной скорости С и изменяющейся по высоте лопаток окружной скорости U (рис. 86).
Для обеспечения безударного входа углы загиба лопаток ВНА делают близкими к углам направления относительной скорости Wi. Поскольку направление относительной скорости меняется по высоте лопатки, углы загиба лопаток ВНА также изменяются пропорционально высоте лопатки, увеличиваясь от втулки к периферии.
Рис. 85. Продольный разрез компрессора двигателя М70ІС-500:
1—входной корпус компрессора; 2—передняя стенка компрессора; 3—переднее опорное кольцо лопаточного диффузора; 4 — фланец отбора воздуха для охлаждения узла турбины; 5—заднее опорное кольцо лопаточного диффузора; 6— крыльчатка компрессора;
7 — передний вал; 8 — основной вал ротора; 9 — силовой конус; 10—задний корпус компрессора; 11 — горловина заднего корпуса компрессора; 12— нижний узел крепления двигателя; 13—лопатка диффузора; 14—штифт; 15 — передний подшипник с корпусом переднего уплотнения; 16—вращающийся направляющий аппарат крыльчатки компрессора
В межлопаточных каналах происходит поворот воздушного потока, вращающийся направляющий аппарат вовлекает воздушный поток во вращение, закручивает его и сообщает ему кинетическую энергию вращательного движения. лающий из ВНА, движется в направлении от центра к периферии с непрерывным возрастанием окружной скорости. На двигателе М701 окружная скорость колеса компрессора меняется от 130 м/с у втулки до 450 м/с на периферии (на максимальном режиме работы двигателя). Вращение потока вызывает появление центробежных сил, повышающих давление воздуха. Таким образом, из колеса выходит закрученный воздушный поток с большой скоростью, т. е. обладающий большой кинетической энергией.
Из колеса воздушный поток поступает в диффузор, в котором полученная кинетическая энергия превращается в работу сжатия. Поэтому на выходе из диффузора скорость воздуха уменьшается, а давление и температура увеличиваются.
Процесс сжатия воздуха в компрессоре происходит с определенными потерями. Так, вследствие вязкости воздуха при вращении колеса происходит трение воздуха, окружающего колесо, и воздуха, движущегося по межлопаточным каналам, о стенки колеса. Это трение создает дополнительный момент сопротивления вращению колеса и требует на его преодоление затрат дополнительной работы, которая входит составной частью в работу, затрачиваемую на вращение компрессора. Основную часть потерь вызывает трение торцевых повен ч — ностей лопаток колеса и воздуха, движущегося по э:» му колесу, о воздух, находящийся в осевых зазорах между колесом и корпусом компрессора.
Кроме трения воздуха, увлеченного во вращение лопатками колеса, о стенки корпуса значительное влияние на величину потерь оказывает перетекание воздуха по зазорам между торцами лопаток и стенкой корпуса. Это приводит к возникновению дополнительных гидравлических потерь. Перетекание воздуха обусловливается наличием разности давлений с обеих сторон лопатки колеса, которая, в свою очередь, является следствием радиального относительного движения воздуха в колесе и абсолютного движения по спирали с возрастающей окружной скоростью, вызывающих появление сил, действующих перпендикулярно относительной скорости в сторону, обратную направлению движения. Действие этих сил создает перепад давления по обе стороны лопаток, что является источником возникновения момента сопротивления, на преодоление которого необходимо затратить работу. Поскольку величина зазора между лопатками колеса компрессора и корпусом существенно влияет на величину потерь, а следовательно, и на коэффициент полезного действия компрессора, этот зазор конструктивно стараются сделать минимальным.
Многоступенчатый осевой компрессор авиационного двигателя
Авторы патента:
Белоус Владимир Иосифович (BY)
F04D27/02 — способы и устройства для устранения помпажа
F02C9/18 — путем отбора, перепуска или путем воздействия на изменяемые связи по рабочему телу между турбинами, компрессорами или их ступенями
Многоступенчатый осевой компрессор авиационного двигателя содержит две или более последовательно установленные ступени. Компрессор также снабжен средством для отключения части ступеней, выполненным в виде средства для отключения одной или более последних ступеней. Изобретение улучшает регулирование компрессора. 5 ил.
Изобретение относится к области авиационного двигателестроения. Может быть использовано в многорежимных сверхзвуковых и в дозвуковых газотурбинных авиационных двигателях.
Известен дозвуковой авиационный двигатель с большой степенью двухконтурности двухвальный ПС-90А [1]. В двигателе установлен вентилятор, приводимый турбиной низкого давления. Компрессор высокого давления состоит из 13 последовательных осевых ступеней, при этом входной направляющий аппарат и направляющие аппараты первой, второй и третьей ступеней выполнены регулируемыми. Осуществляется перепуск воздуха из промежуточных ступеней компрессора высокого давления. Недостатком данного двухкаскадного компрессора является сложность конструкции и ненадежность в работе. Невозможен быстрый и надежный переход с режима пониженной тяги на режим максимальной тяги.
Известен многоступенчатый осевой компрессор по патентному документу SU 1677375. При работе этого компрессора для обеспечения его беспомпажной работы в условиях повышения сопротивления сети за компрессором часть воздуха из-за последней ступени подается на вход промежуточных ступеней по каналу перепуска через регулируемый клапан, являющийся дроссельным устройством. Недостатком этого компрессора является неизбежное уменьшение расхода воздуха через компрессор при увеличении сопротивления сети за компрессором и невозможность быстро изменить степень сжатия компрессора.
Известен многоступенчатый осевой компрессор по патентному документу US 4038818. Указанный компрессор снабжен средством для отключения части ступеней, а именно двух передних ступеней. Это дает возможность при повышении температуры поступающего в компрессор воздуха, не меняя оборотов ротора, сделать работу неотключенных ступеней более расчетной. Но данная конструкция не позволяет восстановить или увеличить расход воздуха через компрессор при увеличении сопротивления сети за компрессором.
Заявляемое изобретение представляет собой новое средство механизации компрессора. Предлагается снабдить многоступенчатый осевой компрессор средством для отключения части ступеней, причем средством для отключения одной или более последних ступеней. В сверхзвуковых двигателях целесообразна замена двухвальной схемы двигателя одновальной одноконтурной. В дозвуковых двухвальных двухконтурных двигателях предлагается применять отключение последних ступеней в последнем каскаде компрессора. Отключение и подключение последних ступеней в компрессоре сверхзвуковых двигателей позволяет отказаться от других средств механизации компрессора: двухкаскадного компрессора и регулируемых направляющих аппаратов статора. Поддерживая приведенное число оборотов ротора равным расчетному значению, есть возможность практически мгновенно менять степень сжатия компрессора путем отключения или подключения последних ступеней. Это позволит быстро менять температуру газов перед турбиной и тягу двигателя без изменения оборотов ротора, регулируя степень расширения газов в турбине. Условия работы оставшихся работать ступеней компрессора будут расчетными или близкими к расчетным. Подключение ранее отключенных последних ступеней в последнем каскаде дозвукового двухконтурного двигателя позволяет практически мгновенно увеличить расход воздуха через внутренний контур и дает возможность поднять температуру газов перед турбиной, регулируя подачу топлива.
При этом увеличивается тяга двигателя без опасности появления помпажа компрессора.
Для отключения ступеней предлагается использовать устройства перепуска воздуха в последних ступенях. При этом скорость выхода воздуха из рабочего колеса отключаемой ступени возрастает настолько, что рабочая нагрузка с рабочего колеса снимается. Вместо перепуска воздуха возможно использование различных сцепных муфт приводов. При помощи сцепной муфты рабочее колесо соединяется с ротором двигателя в режиме включения и разъединяется с ротором в режиме отключения ступени. При этом воздушный поток проходит через рабочее колесо, которое не оказывает на него силового воздействия.
На фиг. 1 изображена схема трех последних ступеней каскада компрессора с отключением двух последних ступеней с помощью устройства перепуска воздуха; на фиг. 2 изображена схема варианта отключения трех последних ступеней каскада компрессора; на фиг. 3 изображен треугольник скоростей ступени компрессора с осевым входом в режиме отключения; на фиг. 4 изображен треугольник скоростей ступени компрессора с предварительной закруткой потока по вращению колеса в режиме отключения.
Однокаскадный осевой компрессор одноконтурного сверхзвукового реактивного двигателя содержит двенадцать последовательных ступеней. Схема последней части компрессора изображена на фиг. 1. На роторе 1 компрессора закреплены рабочие лопатки 2. Каждый ряд лопаток 3, закрепленный на статоре компрессора, может быть заменен двумя последовательными рядами неподвижных лопаток с целью уменьшения сопротивления течению воздушного потока в режиме отключения данной ступени. Две последние ступени компрессора снабжены устройствами перепуска воздуха 4 и 5. Кольцевая полость 6 вокруг отключаемых ступеней предназначена для обеспечения свободного движения воздуха в режиме отключения. Направляющий аппарат 7 на входе в полость 6 может быть использован для возможной закрутки потока. Кольцевая полость 6 соединена вместе с выходом компрессора со входом в камеру сгорания 8 двигателя. Размер, количество и конкретное расположение окон перепуска 4 и 5 определяется исходя из условия обеспечения наилучшего отключения ступеней. Перепуск возможно осуществить с помощью гибкой стальной ленты, закрывающей отверстия в корпусе компрессора в сечении, где необходим перепуск. Также перепуск возможно осуществить с помощью клапанов перепуска воздуха. Окна перепуска в этих клапанах закрываются заслонками, управляемыми гидроцилиндрами. Устройства перепуска воздуха 4 и 5 являются средством для отключения двух последних ступеней в компрессоре. Компрессор соединен валом с турбиной. Двигатель имеет регулируемое сопло, оборудован системой автоматического управления.
С целью упрощения запуска раскрутку ротора 1 двигателя целесообразно начинать с отключенными последними ступенями. После предварительной раскрутки ротора 1 стартером следует закрыть окна перепуска 4 и 5 и одновременно подать — воспламенить топливо в камере сгорания двигателя. Обороты двигателя быстро достигнут расчетного значения. Система автоматического управления поддерживает режим постоянства приведенных оборотов двигателя nпр= const, регулируя, например, подачу топлива в камеру сгорания по сигналу центробежного регулятора и сигнала от датчика температуры воздуха, поступающего на вход компрессора. В зависимости от того, какая требуется тяга двигателя в данный момент времени, осуществляется регулировка температуры газов перед турбиной Tг* путем регулировки степени расширения газов в турбине Пт* при помощи регулируемого сопла. При этом предлагается регулировать степень сжатия компрессора Пк* путем закрытия или открытия окон перепуска 4 и 5 ступеней. Таким образом, чтобы увеличение или уменьшение степени сжатия в раз соответствовало увеличению или уменьшению соответственно Тг* в k раз. В этом случае режим работы работающих ступеней и расход воздуха через компрессор будет поддерживаться расчетным или близким к нему.
Например, увеличению Тг* с 1069 до 1400K должно соответствовать увеличение степени сжатия компрессора раза. Для этого достаточно подключить одну ступень (фиг.5). Подключение еще одной ступени к работе соответственно позволит дополнительно увеличить Тг* без уменьшения расхода воздуха через компрессор. Закрытие окон перепуска 4 и 5 соотвествует подключению этих ступеней к работе, а открытие — к отключению. Сверхзвуковой двигатель с регулируемым соплом, у которого несколько последних ступеней в осевом компрессоре выполнены отключаемыми, имеет не один, а несколько расчетных режимов — в зависимости от того, сколько ступеней компрессора подключено к работе. Вследствие этого есть возможность отказаться от других средств механизации компрессора. Увеличение тяги двигателя происходит быстро на любой возможной высоте полета. Для запуска двигателя в полете с режима авторотации следует одновременно закрыть окна перепуска 4 и 5 и начать подачу топлива с воспламенением.
Кроме указанного выше варианта регулировки двигателя возможно применение специальных команд, регулирующих подачу топлива при отключении и подключении ступеней компрессора.
На фиг. 2 изображена схема варианта отключения последних ступеней в компрессоре, при котором кольцевая полость 6 непосредственно не соединена со входом в камеру сгорания двигателя. Окна перепуска 5 открыты при отключении последней ступени, окна перепуска 4 и 5 отрыты при отключении двух последних ступеней, окна 4, 5 и 9 — при отключении трех последних ступеней.
Отключение и подключение ступеней компрессора может быть применено в качестве эффективного средства против помпажа компрессора в дозвуковых многовальных газотурбинных двигателях двухконтурных и турбовинтовых в последнем каскаде компрессора при быстром восстановлении тяги двигателя. Подключение ступеней дает возможность неограниченно быстро увеличить расход топлива, расход воздуха через внутренний контур и тягу двигателя. Увеличивается скорость восстановления оборотов роторов от пониженных до номинальных.
Свободное течение воздуха в каналах рабочего колеса отключенной ступени будет соответствовать фиг. 3 или 4. Для того, чтобы снять рабочую нагрузку с рабочего колеса отключаемой ступени, необходимо выполнить условие C1u = C2u, то есть окружные составляющие абсолютной скорости на входе в рабочее колесо и на выходе из него должны стать равны. В случае осевого входа воздушного потока в рабочее колесо (фиг. 3) осевым должен быть и выход. Для этого, в результате открытия окон перепуска воздух в межлопаточных каналах рабочего колеса должен не сжиматься, как это имеет место при рабочем режиме работы ступени, а расширяться и ускоряться под действием градиента статического давления при сужении канала течения от F1 на входе до F2 на выходе из рабочего колеса. Если абсолютная скорость C2 достигнет величины C2= tg2u, выход воздуха из рабочего колеса станет осевым, значит крутящий момент на данном рабочем колесе станет равен практически нулю. U = скорость окружная рабочего колеса; индексы 1 и 2 обозначают значения параметров на входе и выходе из рабочего колеса соответственно; 2 — угол между относительной скоростью на выходе W2 и фронтом рабочего колеса. Эти обозначения относятся также к схеме на фиг. 4. Но в этом случае воздушный поток имеет предварительную закрутку перед рабочим колесом в сторону вращения рабочего колеса. В результате открытия окон перепуска воздуха при данном угле 2 должно выполниться условие C1u= C2u. Следует учитывать при расчете компрессора, что скорость потока при сужении канала течения не может стать выше критической. Обтекание лопаток рабочего колеса и лопаток направляющего аппарата отключенной ступени будет проходить без заметного гидравлического сопротивления. На рабочем колесе отключенных ступеней останется незначительная нагрузка, связанная с необходимостью поддерживать циркуляцию воздуха.
В том случае, если для отключения ступеней вместо перепуска воздуха применяются сцепные муфты приводов, происходит уменьшение частоты вращения рабочего колеса отключенной ступени независимо от частоты вращения ротора 1 до величины, при которой C1u станет равной C2u. В качестве сцепных муфт приводов могут быть использованы различные управляемые муфты: фрикционные, кулачковые, гидравлические. Управление муфтами может быть гидравлическим, пневматическим, электромагнитным.
Из приведенного описания совершенно очевидно, что возможны многие модификации и варианты настоящего изобретения. Число ступеней в компрессоре, число отключаемых ступеней, режимы регулирования, расчетные режимы двигателей могут быть различными. Конструкция компрессора позволяет отказаться от сложных автоматов приемистости, гидрозамедлителей и ограничителей нарастания давления топлива перед форсунками. Появляется возможность поднять температуру газов перед турбиной до максимального значения при сниженной температуре воздуха на входе в компрессор.
Источники информации 1) Пивоваров В.А. Авиационный двигатель ПС-90А, Москва, 1989 год.
Формула изобретения
Многоступенчатый осевой компрессор авиационного двигателя, содержащий две или более установленные последовательно ступени, причем компрессор снабжен средством для отключения части ступеней, отличающийся тем, что средство для отключения части ступеней выполнено в виде средства для отключения одной или более последних ступеней.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе
Дата прекращения действия патента: 09.10.2009
Дата публикации: 10.12.2011
Похожие патенты:
Турбокомпрессор // 2162165
Изобретение относится к компрессоростроению и, в частности к осевым, диагональным и осецентробежным компрессорам газотурбинных установок
Турбокомпрессор // 2162164
Изобретение относится к компрессоростроению, в частности к осевым, диагональным и осецентробежным компрессорам газотурбинных установок
Универсальная газотурбинная установка // 2157901
Способ и устройство защиты компрессора от помпажа // 2150611
Изобретение относится к области защиты осевых и центробежных компрессоров от помпажа и может быть использовано в системах защиты и управления газоперекачивающих агрегатов
Ступень турбомашины // 2148732
Изобретение относится к авиадвигателестроению и может быть использовано в компрессорах газотурбинных двигателей
Центробежный компрессор (варианты) и способ регулирования центробежного компрессора // 2138692
Устройство для регулирования перепуска воздуха из компрессора вспомогательной силовой установки // 2136975
Изобретение относится к области автоматического регулирования газотурбинных двигателей, в частности, к устройствам, обеспечивающим устойчивую работу вспомогательных силовых установок (ВСУ) летательных аппаратов при изменении количества отбираемого воздуха потребителем
Газотурбинный двигатель (варианты) // 2126492
Спускной клапан (варианты) // 2119100
Центробежный компрессор со стабилизирующим поток корпусом // 2117825
Изобретение относится к области центробежных компрессоров
Газотурбинный двигатель (варианты) // 2126492
Способ работы высокотемпературной газотурбинной установки // 2044907
Клапан перепуска рабочего тела // 2011875
Система регулирования газотурбинного двигателя // 2008482
Изобретение относится к автоматическому регулированию, в частности к системам регулирования газотурбинных двигателей (ГТД)
Способ управления газотурбогенератором // 1774043
Способ регенерации тепла в газотурбинном двигателе // 1661466
Изобретение относится к авиационным газотурбинным двигателям, позволяет повысить экономичность двигателя на частичных режимах при сжатии воздуха до степени повышения давления более 20 и нагреве выше 1200°С
Способ регулирования многокаскадного компрессора газотурбинного двигателя // 1394790
Регулятор перепуска и отбора воздуха // 357361
Блок для регулирования турбомашины // 211219
Патент 193840 // 193840
Турбохолодильная установка с отбором воздуха от двухконтурного турбореактивного двигателя // 2168122
Изобретение относится к холодильной технике, в частности к воздушным турбохолодильным установкам
| |||||||||||||||
|
Компрессорная секция авиационного турбинного двигателя и типы компрессоров
Компрессорная секция газотурбинного двигателя выполняет множество функций. Его основная функция заключается в подаче воздуха в количестве, достаточном для удовлетворения потребностей горелок. В частности, для выполнения своего назначения компрессор должен повышать давление массы воздуха, поступающего из воздухозаборного тракта, а затем нагнетать его на горелки в необходимом количестве и под требуемыми давлениями.
Второй функцией компрессора является подача отбираемого воздуха для различных целей в двигателе и самолете. Отбираемый воздух берется из любой из различных ступеней давления компрессора. Точное расположение выпускных отверстий, конечно же, зависит от давления или температуры, необходимых для конкретной работы. Порты представляют собой небольшие отверстия в корпусе компрессора, примыкающие к конкретной ступени, из которой должен выпускаться воздух; таким образом, различные степени давления доступны, просто нажав на соответствующую ступень. Воздух часто отбирается из конечной ступени или ступени с самым высоким давлением, поскольку в этот момент давление и температура воздуха максимальны. Иногда может возникнуть необходимость охладить этот воздух под высоким давлением. Если он используется для наддува кабины или других целей, для которых избыточное тепло было бы неудобным или вредным, воздух проходит через блок кондиционирования воздуха, прежде чем он попадет в кабину. Отработанный воздух используется по-разному. Некоторые из текущих применений отбираемого воздуха:
- Герметизация, обогрев и охлаждение кабины
- Противообледенительное и противообледенительное оборудование
- Пневматический запуск двигателей
- Вспомогательные приводные агрегаты (ADU)
Два основных типа компрессоров, используемых в настоящее время в газотурбинных авиационных двигателях центробежный поток и осевой поток. Компрессор с центробежным потоком достигает своей цели, подбирая входящий воздух и ускоряя его наружу за счет центробежного действия. Компрессор с осевым потоком сжимает воздух, в то время как воздух продолжает двигаться в своем первоначальном направлении потока, что позволяет избежать потерь энергии, вызванных поворотами. Компоненты каждого из этих двух типов компрессоров имеют свои индивидуальные функции при сжатии воздуха для секции сгорания. Ступенью в компрессоре считается повышение давления.
Центробежные компрессоры
Центробежный компрессор состоит из рабочего колеса (ротора), диффузора (статора) и коллектора компрессора. [Рисунок 1] Центробежные компрессоры имеют высокий подъем давления на ступень, который может составлять около 8:1. Как правило, центробежные компрессоры ограничены двумя ступенями из-за соображений эффективности. Двумя основными функциональными элементами являются крыльчатка и диффузор. Несмотря на то, что диффузор представляет собой отдельный блок, который размещается внутри и крепится болтами к коллектору, весь узел (диффузор и коллектор) часто называют диффузором. Для уточнения при ознакомлении с компрессором блоки рассматриваются индивидуально. Рабочее колесо обычно изготавливается из кованого алюминиевого сплава, термически обработанного, обработанного и сглаженного для минимального ограничения потока и турбулентности.
Рис. 1. (A) Компоненты центробежного компрессора; (B) Колено выпуска воздуха с поворотными лопастями для снижения потерь давления воздуха |
В большинстве типов рабочее колесо изготавливается из цельной поковки. Крыльчатка этого типа показана на рис. 1. Крыльчатка, функция которой состоит в том, чтобы подбирать и ускорять воздух, направляемый наружу к диффузору, может быть двух типов — с одинарным или двойным входом. Принципиальные различия между двумя типами крыльчаток заключаются в размере и расположении воздуховодов. Двусторонний тип имеет меньший диаметр, но обычно работает с более высокой скоростью вращения, чтобы обеспечить достаточный поток воздуха. Одностороннее рабочее колесо, показанное на рис. 2, обеспечивает удобный воздуховод непосредственно к проушине рабочего колеса (нагнетательные лопасти), в отличие от более сложного воздуховода, необходимого для доступа к задней стороне двухстороннего типа. Хотя крыльчатка с односторонним входом немного более эффективна в приеме воздуха, она должна быть большого диаметра, чтобы подавать такое же количество воздуха, как и рабочее колесо с двойным входом. Это, конечно, увеличивает габаритный диаметр двигателя.
Рис. 2. Рабочее колесо одностороннего входа |
В воздуховод двухкамерного компрессора входит воздуховод. Эта камера необходима для компрессора двустороннего входа, потому что воздух должен поступать в двигатель почти под прямым углом к оси двигателя. Следовательно, чтобы создать положительный поток, воздух должен окружать компрессор двигателя с положительным давлением перед входом в компрессор. В состав некоторых установок в качестве необходимых частей нагнетательной камеры входят вспомогательные дверцы воздухозаборника (продувочные дверцы). Эти продувочные люки пропускают воздух в моторный отсек во время наземной эксплуатации, когда потребности в воздухе для двигателя превышают расход воздуха через воздухозаборники. Двери удерживаются закрытыми под действием пружины, когда двигатель не работает. Однако во время работы двери автоматически открываются, когда давление в моторном отсеке падает ниже атмосферного. Во время взлета и полета набегающее давление воздуха в моторном отсеке помогает пружинам удерживать двери закрытыми.
Диффузор представляет собой кольцевую камеру с несколькими лопастями, образующими ряд расходящихся проходов в коллектор. Лопасти диффузора направляют поток воздуха от крыльчатки к коллектору под углом, предназначенным для сохранения максимального количества энергии, передаваемой крыльчаткой. Они также подают воздух в коллектор со скоростью и давлением, достаточными для использования в камерах сгорания. Обратитесь к рисунку 1-A и обратите внимание на стрелку, указывающую путь воздушного потока через диффузор, а затем через коллектор.
Коллектор компрессора, показанный на рис. 1-A, отводит поток воздуха от диффузора, который является составной частью коллектора, в камеры сгорания. Коллектор имеет по одному выпускному отверстию для каждой камеры, что обеспечивает равномерное распределение воздуха. Выходное колено компрессора прикручено болтами к каждому выходному отверстию. Эти воздуховыпускные отверстия выполнены в виде воздуховодов и известны под разными названиями, например воздуховоды, выпускные колена или впускные воздуховоды камеры сгорания. Независимо от используемой терминологии, эти выпускные каналы выполняют очень важную часть процесса диффузии; то есть они меняют радиальное направление воздушного потока на осевое, в котором процесс диффузии завершается после поворота. Чтобы колена могли эффективно выполнять эту функцию, внутрь колен иногда встраивают поворотные лопатки (каскадные лопатки). Эти лопасти уменьшают потери давления воздуха за счет гладкой вращающейся поверхности. [Рисунок 1-Б]
Осевой компрессор
Осевой компрессор состоит из двух основных элементов: ротора и статора. Ротор имеет лопасти, закрепленные на шпинделе. Эти лопасти толкают воздух назад так же, как пропеллер, из-за их угла наклона и контура аэродинамического профиля. Ротор, вращающийся с высокой скоростью, всасывает воздух на входе в компрессор и прогоняет его через ряд ступеней. От входа к выходу воздух течет по оси и сжимается в соотношении примерно 1,25:1 на ступень. Действие ротора увеличивает сжатие воздуха на каждой ступени и ускоряет его назад через несколько ступеней. При такой повышенной скорости энергия передается от компрессора воздуху в виде энергии скорости. Лопасти статора действуют как диффузоры на каждой ступени, частично преобразовывая высокую скорость в давление. Каждая следующая пара лопаток ротора и статора образует ступень давления.
Статор имеет ряды лопаток, которые, в свою очередь, закреплены внутри кожуха. Статорные лопасти, которые неподвижны, выступают радиально к оси ротора и плотно прилегают к обеим сторонам каждой ступени лопастей ротора. В некоторых случаях корпус компрессора, в который вставлены лопатки статора, горизонтально разделен на половины. Верхнюю или нижнюю половину можно снять для осмотра или обслуживания лопастей ротора и статора.
Функция лопаток статора состоит в том, чтобы получать воздух из впускного воздуховода или с каждой предыдущей ступени, повышать давление воздуха и подавать его на следующую ступень с нужной скоростью и давлением. Они также контролируют направление воздуха к каждой ступени ротора для достижения максимально возможной эффективности лопаток компрессора. На рисунке 3 показаны элементы ротора и статора типичного осевого компрессора. Лопаткам ротора первой ступени может предшествовать узел входного направляющего аппарата, который может быть фиксированным или регулируемым.
Рис. 3. Элементы ротора и статора типичного осевого компрессора движения воздуха, поступающего в компрессор. Эта предварительная закрутка в направлении вращения двигателя улучшает аэродинамические характеристики компрессора за счет уменьшения сопротивления лопаток ротора первой ступени. Входные направляющие лопатки представляют собой изогнутые стальные лопатки, обычно приваренные к стальным внутреннему и внешнему кожухам. На нагнетательном конце компрессора лопатки статора сконструированы так, чтобы выпрямлять воздушный поток и устранять турбулентность. Эти лопасти называются выпрямляющими лопастями или узлом выпускной лопасти. Корпуса осевых компрессоров не только поддерживают лопатки статора и обеспечивают внешнюю стенку осевого пути, по которому следует воздух, но также обеспечивают средства для извлечения компрессорного воздуха для различных целей. Лопасти ротора обычно изготавливаются из нержавеющей стали, а последние ступени — из титана. Конструкция крепления лопастей к венцам дисков ротора различается, но обычно они вставляются в диски либо бульбовым, либо елочным способом. [Рисунок 4] Затем лезвия фиксируются на месте различными способами. Концы лопаток компрессора имеют уменьшенную толщину за счет вырезов, называемых профилями лопаток. Эти профили предотвращают серьезное повреждение лопасти или корпуса в случае контакта лопастей с корпусом компрессора. Это состояние может возникнуть, если лопасти ротора слишком ослаблены или опора ротора уменьшается из-за неисправного подшипника. Несмотря на то, что профили лопаток значительно снижают такие возможности, иногда лопатка может сломаться под нагрузкой от трения и нанести значительный ущерб лопаткам компрессора и узлам лопаток статора.
|