Авиационный двигатель поршневой – Поршневой авиационный двигатель | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.
Поршневой авиационный двигатель | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.
Работа радиального поршневого двигателя.
Привет, друзья!
Сегодня начинаем серию статей о конкретных типах авиационных двигателей. Первый движок, который удостоится нашего внимания – это поршневой авиационный двигатель. Он имеет полное право быть первым, потому что он – ровесник современной авиации. Один из первых самолетов, поднявшихся в воздух был Флайер-1 братьев Райт (я думаю вы читали об этом здесь :-)). И на нем стоял поршневой двигатель авторской разработки, работавший на бензине.
Долгое время этот тип движка оставался единственным, и только в 40-е годы 20-го века началось внедрение двигателя совсем иного принципа действия. Это был турбореактивный двигатель. Из-за чего это произошло читайте тут. Однако поршневой движок, хоть и утратил свои позиции, но со сцены не сошел, и теперь в связи с достаточно интенсивным развитием так называемой малой авиации (или же авиации общего назначения) он просто получил второе рождение. Что же из себя представляет

Работа двигателя внутреннего сгорания (тот же рядный поршневой двигатель).
Как всегда :-)… В принципиальном плане ничего сложного (ТРД значительно сложнее :-)). По сути дела – это обычный двигатель внутреннего сгорания (ДВС), такой же, как на наших с вами автомобилях. Кто забыл, что такое ДВС, в двух словах напомню. Это, попросту говоря, полый цилиндр, в который вставлен цилиндр сплошной, меньший по высоте (это и есть поршень). В пространство над поршнем в нужный момент подается смесь из топлива (обычно это бензин) и воздуха. Эта смесь воспламеняется от искры (от специальной электрической свечи) и сгорает. Добавлю, что воспламенение может происходить и без искры, в результате сжатия. Так работает всем известный дизельный двигатель. В результате сгорания получаются газы высокого давления и температуры, которые давят на поршень и заставляют его двигаться. Вот это самое движение и есть суть всего вопроса. Далее оно передается через специальные механизмы в нужное нам место. Если это автомобиль, значит на его колеса, а если это самолет, то на его воздушный винт. Таких цилиндров может быть несколько, точнее даже много :-). От 4-х до 24-х. Такое количество цилиндров обеспечивает достаточную мощность и устойчивость работы двигателя.

Еще одна схема работы одного ряда цилиндров.
Конечно авиационный поршневой двигатель только принципиально похож на обычный ДВС. На самом деле здесь обязательно присутствует авиационная специфика. Двигатель самолета выполнен из более совершенных и качественных материалов, более надежен. При той же массе, он значительно мощнее автомобильного. Обычно может работать в перевернутом положении, ведь для самолета (особенно истребителя или спортивного) пилотаж – обычное дело, а автомобилю это, естественно, не нужно.

Двигатель М-17, поршневой, рядный, V-образный. Устанавливался на самолеты ТБ-3 (конец30-хгодов 20 в.)

Двигатель М-17 на крыле ТБ-3.
Поршневые двигатели могут различаться как по количеству цилиндров, так и по их расположению. Бывают рядные двигатели (цилиндры в ряд) и радиальные (звездообразные). Рядные двигатели могут быть однорядные, двухрядные, V-образные и т.д. В звездообразных цилиндры расположены по окружности (в виде звезды) и бывает их обычно от пяти до девяти (в ряду). Эти двигатели, кстати, тоже могут быть многорядными, когда цилиндры блоками стоят друг за другом. Рядные двигатели обычно имеют жидкостное охлаждение (как в автомашине :-), они и по виду больше похожи на автомобильные), а радиальные – воздушное. Они обдуваются набегающим потоком воздуха и цилиндры, как правило, имеют ребра для лучшего теплосъема.

Двигатель АШ-82, радиальный, двухрядный. Устанавливался на самолеты ЛА-5, ПЕ-2.

Самолет ЛА-5 с двигателем АШ-82.
Авиационные поршневые двигатели часто имеют такую особенность, как высотность. То есть с увеличением высоты, когда плотность и давление воздуха падают, они могут работать без потери мощности. Подвод топливно-воздушной смеси может осуществляться двумя способами. Здесь полная аналогия с автомашиной. Либо смесь готовится в специальном агрегате, называемом карбюратором и потом подается в цилиндры (карбюраторные двигатели), либо топливо непосредственно впрыскивается в каждый цилиндр в соответствии с количеством поступающего туда же воздуха. На автомобилях такого типа двигатели часто обзывают «инжекторными».

Современный поршневой радиальный двигатель ROTEC R2800.

Более мощный R3600 (большее количество цилиндров).
В отличие от обычного автомобильного ДВС, для самолетного поршневого движка не нужны громоздкие (ну и, естественно, тяжелые :-)) передаточные механизмы от поршней к колесам. Все эти оси, мосты, шестерни. Для самолета ведь вес очень важен. Здесь движение от поршня сразу через шатун передается на главный коленчатый вал, а на нем уже стоит вторая важная часть самолета с поршневым двигателем – воздушный винт. Винт – это, так сказать, самостоятельная (и очень важная) единица. В нашем случае он является «движителем» самолета, и от его корректной работы зависит качество полета. Винт – это не часть двигателя, но работают они в тесном сотрудничестве :-). Винт всегда подбирается или проектируется и рассчитывается под конкретный двигатель, либо же они создаются одновременно, так сказать комплектом :-).

Радиальный двигатель М-14П. Устанавливается на спортивные СУ-26, ЯК-55.

СУ-26 с двигателем М-14П.
Принцип работы винта – это достаточно серьезный ( и не менее интересный :-)) вопрос, поэтому я решил выделить его в отдельную статью, а сейчас пока вернемся к «железу».
Я уже говорил, что сейчас поршневой авиационный двигатель опять «набирает обороты». Правда состав авиации использующей эти двигатели теперь другой. Соответственно изменился и состав применяемых двигателей. Тяжелые и громоздкие рядные движки практически отошли в прошлое. Современный поршневой двигатель (чаще всего) – радиальный с количеством цилиндров 7-9, с хорошей топливной автоматикой с электронным управлением. Один из типичных представителей этого класса, например, двигатель ROTEC 2800 для легких самолетов, создан и производится в Австралии (между прочим выходцами из России :-)). Однако о рядных двигателях тоже не забывают. Таков, например, ROTAX-912. Так же хорошо известен двигатель отечественного производства М-14П, который устанавливается на спортивные самолеты ЯК-55 и СУ-26.

Двигатель Rotax-912, рядный. Устанавливается на легкие спортивные самолеты Sports-Star Max

Спортивный самолет Sport-Star Max c двигателем Rotax-912.
Существует практика применения дизельных двигателей ( как разновидность поршневых) в авиации, еще со времен войны. Однако широко этот двигатель пока не применяется из-за существующих проблем в разработке, в частности в области надежности. Но работы все равно ведутся, особенно в свете грядущего дефицита нефтепродуктов.
Поршневой авиационный двигатель
вообще еще рано списывать со счетов :-). Ведь, как известно, новое – это хорошо забытое старое… Время покажет…No related posts.
avia-simply.ru
Авиационный поршневой двигатель: обзор, устройство и характеристики
Долгое время, с конца XIX века и до середины XX, поршневой авиационный двигатель оставался единственным мотором, который обеспечивал полеты самолетов. И только в сороковых годах прошлого века он уступил свое место двигателям с иными принципами работы — турбореактивным. Но, несмотря на то, что поршневые моторы и утратили свои позиции, они не исчезли со сцены.
Современные области применения поршневых моторов
В настоящее время авиационные поршневые двигатели применяют в основном на спортивных самолетах, а также на малых летательных аппаратах, изготовленных по персональным заказам. Одной из главных причин того, что моторы этого типа используются крайне мало, является то, что соотношение единицы мощности к единице массы поршневого двигателя существенно меньше по сравнению с газотурбинными. Поршневые по скоростным показателям не выдерживают никакой конкуренции с иными моторами, применяемыми в авиастроении. Более того, КПД их не превышает 30 %.

Виды поршневых авиамоторов
Поршневые авиационные двигатели имеют различия в основном по порядку расположения цилиндров по отношению к коленвалу. Вследствие этого имеется достаточно большое количество разнообразных видов поршневых моторов. Наиболее широкое применение получили следующие:
- двигатели, у которых V-образное расположение цилиндров;
- поршневой радиальный двигатель, где цилиндры расположены звездообразно;
- оппозитный двигатель, у него цилиндры располагаются рядно.
Двигатели с V-образным расположением цилиндров
Они являются самыми известными и применяемыми типами двигателей внутреннего сгорания в авиастроении и не только. Их название связано с характерным расположением цилиндров по отношению к коленвалу. При этом они имеют различный уровень наклона по отношению друг другу. Он может составлять от 10 до 120 градусов. Такие моторы работают по тем же принципам, как и иные двигатели внутреннего сгорания.

К достоинствам двигателей с V-образным расположением цилиндров относится относительная их компактность при сохранении мощностных показателей, а также возможность получать приличный крутящий момент. Конструкция позволяет достигать значительных ускорений вала вследствие того, что инерция, создаваемая при работе, значительно выше, чем у иных типов двигателей внутреннего сгорания. По сравнению с другими типами, эти отличаются наименьшей высотой и длиной.
Моторы этого вида имеют высокую жесткость коленвала. Это обеспечивает большую конструктивную прочность, что увеличивает сроки службы всего двигателя. Рабочие частоты таких моторов отличаются большими диапазонами. Это позволяет быстро набирать обороты, а также устойчиво работать на предельных режимах.
К недостаткам поршневых авиационных двигателей с V-образным мотором относят сложность их конструкции. Вследствие этого они стоят значительно дороже других типов. Более того, они отличаются достаточно большой шириной двигателя. Также V-образные моторы характеризуются высоким уровнем вибрации, сложностями при балансировке. Это приводит к тому, что приходится специально утяжелять различные их части.
Радиальный авиационный поршневой двигатель
В настоящее время радиальные поршневые моторы опять стали востребованы в авиации. Они активно применяются в спортивных моделях самолетов, либо в изготовленных по персональным заказам. Все они малых размеров. Устройство авиационного поршневого двигателя радиального вида, в отличие от иных моторов, заключается в том, что его цилиндры расположены вокруг коленвала через равные углы, как радиальные лучи (звездочки). Это и дало ему название — звездообразный. Такие моторы оборудуются выхлопной системой, которая расходится радиальными лучами. Более того, двигатель этого типа может иметь несколько звезд — отсеков. Это возможно вследствие того, что коленвал увеличивают в длину. Как правило, радиальные двигатели изготавливают с нечетным количеством цилиндров. Это позволяет подавать искру в цилиндр через один. Но делают и радиальные моторы с четным числом цилиндров, однако их количество должно быть больше двух.

Самым большим недостатком двигателей радиального типа является возможность проникновения масла к нижним цилиндрам мотора, когда самолет находится на стоянке. Эта проблема достаточно часто приводит к возникновению мгновенного гидроудара, что влечет поломку всего кривошипно-шатунного механизма. Для недопущения таких проблем перед пуском мотора требуется постоянная проверка состояния нижних цилиндров на предмет отсутствия проникновения к ним масла.
К достоинствам двигателей радиального типа относят их малые габариты, простоту эксплуатации и приличную мощность. Обычно их устанавливают на самолеты спортивных моделей.
Оппозитный авиационный поршневой двигатель
В настоящее время оппозитные авиационные моторы начинают переживать свое второе рождение. Вследствие того, что они обладают небольшими размерами и сравнительно малым весом, их ставят на легкие спортивные самолеты. Они способны развивать достаточную мощность и обеспечивают очень высокие скорости.

Оппозитные двигатели имеют несколько типов конструкций:
1. Мотор, изготовленный по методу «боксер» (Subaru). В таких двигателях поршни цилиндров, расположенных против друг друга, двигаются равноудалено. Это приводит к тому, что в каждом цикле один находится в верхней мертвой точке, а противоположный — в нижней.
2. Двигатели, снабженные устройством ОРОС (Opposed Piston Opposed Cylinder). В таких моторах цилиндры по отношению к коленвалу, расположены горизонтально. В каждом из них находится по два поршня, которые при работе двигаются навстречу. Дальний поршень связан с коленвалом специальным шатуном.
3. Двигатель, сделанный на основании принципа, примененного в советском моторе 5ТДФ. В таком изделии поршни передвигаются навстречу друг другу, работая попарно в каждом отдельном цилиндре. При достижении обоих поршней верхней мертвой точки между ними впрыскивается топливо. Двигатели такой разновидности могут функционировать на горючем различных видов, от керосина до бензина. Для увеличения мощности оппозитных моторов их снабжают турбонаддувом.
Главное достоинство в двигателях оппозитного типа — это компактность, малые габариты. Их можно применять на самолетах очень маленьких размеров. Мощность их достаточно высока. В настоящее время они находят все большее распространение в спортивных летательных аппаратах.
В качестве основного недостатка отмечается высокий расход топлива и особенно моторного масла. По отношению к двигателям других типов оппозитные моторы расходуют горюче-смазочные материалы в два раза больше. Они требуют постоянной замены масла.

Современные авиадвигатели
Современные поршневые авиационные двигатели – это очень сложные системы. Они оснащены современными узлами и агрегатами. Их работу обеспечивают и контролируют современные системы и приборы. Вследствие применения передовых технологий весовая характеристика двигателя существенно снижена. Мощности их возросли, что способствует широкому применению в легкомоторной — спортивный авиации.
Авиационные масла
Масло в поршневых авиационных двигателях работает в достаточно сложных условиях. Это высокие температуры в зонах поршневых колец, на внутренних частях поршней, на клапанах и иных узлах. Поэтому для качественного обеспечения работы мотора в условиях значительных температур, давления, нагрузок, в них используют высоковязкие масла, которые подвергают специальной очистке. Они должны обладать высокой смазочной способностью, оставаться нейтральными к металлам и иным конструктивным материалам двигателя. Авиационные масла для поршневых моторов должны быть стойкими к окислению при воздействии высоких температур, не терять своих свойств при хранении.

Отечественные поршневые авиационные моторы
История производства поршневых моторов в России начинается с 1910 года. Массовый выпуск начался в годы Первой мировой войны. В Советском Союзе советские поршневые авиационные двигатели собственной конструкции стали создавать с 1922 года. С ростом промышленного производства, в том числе авиационного, страна стала массово выпускать поршневые моторы 4-х производителей. Это были двигатели В. Климова, А. Швецова, завода № 29, А. Микулина.
После войны начинается процесс модернизации авиации СССР. Проектируются и создаются авиадвигатели для новых самолетов. Активно развивается реактивное самолетостроение. В 1947 году вся военная авиация, работающая на высоких скоростях, переходит на реактивную тягу. Поршневые авиадвигатели применяются только на учебных, спортивных, пассажирских и военно-транспортных самолетах.

Самый большой поршневой авиадвигатель
Самый мощный поршневой авиационный двигатель был создан в США В 1943 году. Он назывался Lycoming XR-7755. Это был мотор с тридцатью шестью цилиндрами. Его рабочий объем составляла 127 литров. Он был способен развить мощность в 5000 лошадиных сил. Предназначался для самолета Convair B-36. Однако в серию не пошел. Был создан в двух экземплярах, в качестве прототипов.
fb.ru
Глава первая Закат славы поршневого авиационного двигателя
Глава первая
Закат славы поршневого авиационного двигателя
Ноябрь 1935 года. Известный советский летчик Владимир Коккинаки поднимает свою стальную птицу на высоту 14 575 ж, установив этим новый мировой рекорд высоты. Безотказно работает двигатель его самолета на огромной высоте, в крайне разреженном воздухе, в условиях, в которых не пришлось еще побывать ни одному другому двигателю в мире.
Июнь 1937 года. Весь мир, затаив дыхание, следит за небывалым полетом краснозвездного самолета Валерия Чкалова через Северный полюс из Советского Союза в Америку (рис. 1). 63 часа летит самолет над неисследованными просторами ледяных полей Арктики, сквозь туман и снег, сквозь штормы и непогоду. И все это время неутомимо, как часы, работает двигатель самолета, радуя экипаж своим мощным, ровным гулом.
— Замечательный мотор! — говорит Чкалов после посадки.
Тысячи километров без посадки пролетели советские самолеты в известных дальних перелетах Чкалова, Громова, Коккинаки, Гризодубовой и других советских летчиков. Эти победы советской авиации были бы невозможны без совершенных, мощных и экономичных авиационных двигателей, созданных отечественной авиационной промышленностью.
В годы Великой Отечественной войны советская авиация покрыла себя неувядаемой славой в борьбе за свободу и независимость нашей Родины. Десятки тысяч самолетов Военно-воздушных сил нашей страны громили тогда в воздухе фашистских стервятников. На этих самолетах были установлены поршневые авиационные двигатели различных типов, построенные на советских авиационных заводах.
Неудивительно, что поршневой авиационный двигатель стяжал себе большую славу и обеспечил авиации столько замечательных побед. В результате полувекового развития этот двигатель стал высокосовершенной машиной.

Рис. 1. Маршруты дальних перелетов В. П. Чкалова
Представьте себе, что вы находитесь на зеленом ковре Тушинского аэродрома в один из традиционных дней авиации еще в предвоенный период.
Вот над вашей головой стремительно пронесся истребитель, наполнив воздух густым, могучим ревом. Мгновение — и высоко в небе вы видите только серебристую точку, которая вскоре сливается с общим голубым фоном. Там, в бездонной глубине неба, в четком строю проплывают какие-то большие самолеты. Это летят воздушные «линкоры» — тяжелые бомбардировщики. Даже большая высота не скрывает огромных размеров этих многотонных машин.
Что же это за могучая сила, которая поднимает в воздух на многокилометровую высоту воздушные корабли весом в несколько десятков тонн и делает кажущуюся такой неповоротливой на земле машину похожей на стремительную птицу, молнией пересекающую голубой купол небосвода?
Эта сила создается воздушным винтом. Он вращается с огромной скоростью, совершая каждую минуту более тысячи оборотов: его лопасти сливаются в один сверкающий диск (рис. 2).
Рис. 2. Лопасти вращающихся винтов сливаются в сплошные диски (советский тяжелый бомбардировщик в период Великой Отечественной войны в полете)
Каким же образом воздушный винт создает движущую силу, или тягу, как ее называют? Почему он способен служить «движителем», т. е. устройством, создающим движущую силу?
Мы не можем видеть того, как создается тяга винтом, ибо окружающий нас воздух прозрачен. Однако, если захотим, мы можем почувствовать это. Станьте позади работающего винта — на вас тотчас обрушится стремительный поток воздуха, сильнее любого урагана. Но сделайте два шага в сторону, и вы выйдете из сферы действия воздушного потока — «ураган» исчезнет. Этот «ураган» создается винтом. Оказывается, винт — это мощный вентилятор. Он засасывает спереди окружающий неподвижный воздух и с огромной скоростью отбрасывает его назад.
Если бы мы могли сделать воздух видимым, например, окрашенным в зеленый цвет, причем не просто окрашенным, а так, что по мере ускорения движения воздуха окраска его становилась бы все темнее, то мы увидели бы необыкновенно красивое зрелище.
Вот в светлозеленом океане начал вращаться воздушный винт. Взволновался океан перед винтом, и со всех сторон — спереди, сбоку, сверху, снизу — стали притекать к прозрачному диску вращающегося винта воздушные струйки, образуя огромную зеленую воронкообразную чашу. Чем ближе к винту, тем уже и темнее эта чаша. Вот струйки прошли через едва различимую преграду — диск вращающегося винта; за ним огромная воздушная воронка стала темнозеленой. Воздушный поток — «ураган» — стал видимым. Винт оказался работающим внутри образованной им в воздушном океане своеобразной «аэродинамической трубы», заполненной быстро движущимся воздухом (рис. 3).
Рис. 3. Такую невидимую воздушную струю образует воздушный винт
Вот, оказывается, в чем заключается действие винта — он неустанно отбрасывает назад воздух так же, как мы с вами могли бы бросить камень или мяч.
Но ведь «бросить» —это значит толкнуть. Чем тяжелее камень и чем большую скорость он приобретает при толчке, тем большей должна быть сила толчка. Винт отбрасывает каждую секунду сотни и тысячи килограммов воздуха со скоростью в десятки метров в секунду, поэтому он действует на воздух с огромной силой в сотни и тысячи килограммов.
Но в природе всегда и неразрывно связаны между собой действие и противодействие — силы, равные по величине друг другу, но противоположно направленные. Так и гласит один из основных законов механики, установленный создателем этой науки — Ньютоном (третий закон Ньютона): действие равно противодействию.
Следуя этому закону, воздух сопротивляется действию винта, оказывает ему противодействие. Если винт толкает воздух, то воздух с такой же силой толкает винт.
Вот это противодействие воздуха, т. е. та сила, с которой отбрасываемый воздух действует на винт, и есть движущая сила винта, его тяга. Значит, тяга винта — это сила реакции отбрасываемого им воздуха (по латыни «реакция» и есть противодействие). Мы здесь встречаемся, следовательно, с движущим устройством, использующим принцип реактивной отдачи.
Так как вращающийся воздушный винт непрерывно отбрасывает с большой скоростью огромную массу воздуха, то легко видеть, что для вращения его нужно затрачивать большую работу. «Ураган», бушующий за винтом, обходится недешево.
Для приведения во вращение воздушного винта и устанавливается на самолете авиационный поршневой двигатель. Вместе они образуют силовую установку, без которой самолет не может совершать полет. Двигатель развивает необходимую для совершения полета мощность, а воздушный винт использует эту мощность для создания силы тяги, движущей самолет.
Понятно, какое огромное значение имеет для самолета совершенство установленного на нем двигателя. Не зря говорят, что двигатель — это сердце самолета. Чем надежнее, мощнее, легче и меньше по размерам двигатель, чем меньше топлива он расходует, тем быстрее, выше и дальше может летать самолет.
Наши ученые, конструкторы, инженеры и рабочие авиационной промышленности настойчиво развивали и совершенствовали авиационные двигатели, обеспечивая высокое качество советской авиации.
Три четверти века назад был создан авиационный поршневой двигатель внутреннего сгорания. С тех пор этот двигатель прошел замечательный путь развития. Современные поршневые авиационные двигатели так же не похожи на первые двигатели, как и современные самолеты не похожи на «летающие этажерки» и «летающие гробы» начала нашего века.
Вот перед нами на взлетной полосе аэродрома стоит готовый к взлету самолет с поршневым двигателем (рис. 4). Уже получено разрешение на взлет; сейчас летчик «даст газ» — передвинет рычаг управления вперед, двигатель перейдет на полную мощность и самолет начнет разбег для взлета.
Но задержим самолет на взлетной полосе, положив под его колеса деревянные колодки. Теперь, сколько ни будет «газовать» летчик, самолет не тронется с места. Воспользуемся возможностью и познакомимся с двигателем самолета.
Рис. 4. Самолет Як-18 перед взлетом
Двигатель установлен в передней части фюзеляжа. Его совсем не видно, так как он укрыт капотом — обтекателем, создающим самолету плавные обтекаемые формы. Из-под капота наружу выглядывают только небольшие выхлопные патрубки, из которых вырываются языки голубоватого пламени. Это выбрасываются в атмосферу из цилиндров двигателя раскаленные газы, продукты сгорания бензина, на котором работает двигатель.
В цилиндрах двигателя происходят очень сложные процессы. Много раз в секунду осуществляется в каждом из них рабочий цикл: засасывается свежий воздух, который на пути в цилиндры перемешивается с топливом — бензином; бензовоздушная смесь сжимается и мгновенно сгорает, при этом образуются раскаленные газы высокого давления. В этих-то газах и заключена вся тепловая энергия, выделившаяся при сгорании топлива, в них источник той силы, которая неутомимо вращает воздушный винт. Но путь энергии от газов к винту весьма сложен. Газы расширяются и давят на поршни, движущиеся вверх-вниз в цилиндрах; поршни связаны шатунами с коленчатым валом. Так с помощью сложного кривошипно-шатунного механизма энергия расширяющихся газов сообщается коленчатому валу двигателя. От коленчатого вала двигателя, обычно через шестеренчатую передачу — редуктор, получает вращение воздушный винт.
Если бы капот самолета и стенки двигателя были стеклянными, то мы все равно не смогли бы разобраться в том, что происходит внутри двигателя. Протекающие в нем различные процессы чередуются так быстро, что потребовалась бы «лупа времени», замедленная киносъемка для того, чтобы уловить направление движения частей двигателя или разобраться в последовательности происходящих в нем явлений.

Рис. 5. Отечественный поршневой авиационный двигатель АШ-82
Современный поршневой авиационный двигатель (рис. 5) состоит из тысяч различных деталей. Он развивает мощность до нескольких тысяч лошадиных сил, способен работать десятки часов подряд, даже в разреженной атмосфере, на высотах в 15 км и более, выдерживает огромную нагрузку, которой подвергается в полете при выполнении фигур высшего пилотажа или в воздушном бою. И вместе с тем он во много раз легче и меньше любого другого двигателя внутреннего сгорания такой же мощности.
Поршневой авиационный двигатель — это сложнейшая машина, исключительно точная, изготовленная из особо высококачественных материалов; в нем воплощены достижения различных отраслей пауки и техники. Только страны с высокоразвитой тяжелой индустрией в состоянии строить такие машины.
Десятилетия служил поршневой двигатель авиации, завоевав всеобщее признание, достигнув вершины славы. И тем стремительнее было падение этого двигателя, хотя неизбежный закат его славы ученые предсказывали еще тогда, когда она находилась в самом зените.
Что же послужило причинами этому падению?
Таких причин было по существу две, хотя обе они касаются одного и того же.
Дело в том, что поршневой авиационный двигатель не смог решить задачу резкого увеличения скорости полета, задачу, которая поставлена перед авиацией всем ходом ее развития. И в то же время появился новый двигатель, который обеспечивает решение этой задачи.
Нет ничего удивительного в том, что именно борьба за скорость полета решила участь поршневого двигателя.
Увеличение скорости полета — одно из важнейших направлений развития авиации. Весь опыт, накопленный авиацией за полвека ее развития, подтверждает правильность слов, ставших за последнее время крылатыми: кто быстрее в воздухе, тот и сильнее в воздухе.
Но почему же именно дальнейшее увеличение скорости стало неразрешимой задачей для поршневого двигателя? Ведь этот двигатель выдержал немало испытаний еще совсем в недалеком прошлом; он одержал немало побед и в борьбе за скорость полета. Непрерывное усовершенствование двигателя было одной из причин непрерывного увеличения скорости полета самолетов. К концу минувшей войны истребители с поршневыми двигателями обладали скоростью полета 700—750 км/час — это в 15 раз больше скорости полета самолетов начала нашего века. Замечательный успех! Ни в одном другом виде транспорта не было таких темпов роста скоростей движения.
Конечно, достигнутый рубеж в борьбе за скорость полета не является еще пределом для поршневого авиационного двигателя. Настойчивая работа по дальнейшему совершенствованию этого двигателя вместе с совершенствованием самого самолета привела бы к увеличению скорости полета, и достигнутый рубеж можно было бы перейти. И все же предел возможностей поршневого двигателя в борьбе за скорость полета существует; к концу второй мировой войны авиация, выражаясь военным языком, была уже на ближних подступах к этому пределу.
Предел, через который не может перешагнуть самолет с поршневым двигателем, это — полет со скоростью звука.
Еще в прошлом веке русский ученый профессор Н. В. Маиевский указал на тот качественный рубеж, который представляет собой полет со скоростью звука, т. е. с той скоростью, с которой в воздухе распространяются звуковые волны, звуковые колебания. Эта скорость вблизи земли равна примерно 1225 км/час.
В начале нашего века другой русский ученый, глава советской школы аэродинамиков С. А. Чаплыгин в своей магистерской диссертации первым в мире раскрыл суть процессов, происходящих при полете со скоростью, близкой к скорости звука или больше звуковой.
Теперь эти процессы изучены и теоретически, и практически. Хорошо известно, что когда скорость полета приближается к звуковой, то сопротивление, оказываемое воздухом летящему самолету, резко увеличивается. При этом характер обтекания воздушным потоком самолета, прежде всего его крыла, резко изменяется. Секрет этих изменений обусловливается сжимаемостью воздуха.
Когда скорость полета начинает приближаться к звуковой, то в воздухе, обтекающем самолет, появляются зоны сильного местного сжатия и правильное обтекание нарушается. Сопротивление, которое приходится преодолевать летящему самолету, при этом резко увеличивается. Преодолеть такое сопротивление поршневой двигатель с винтом оказывается не в состоянии.
Опыт показывает, что с увеличением скорости полета сопротивление летящему самолету увеличивается пропорционально квадрату скорости, если скорость полета остается значительно меньшей скорости звука; при увеличении скорости вдвое сопротивление возрастает вчетверо и т. д. Но если сопротивление увеличивается пропорционально квадрату скорости, то и тяга, развиваемая винтом, должна расти пропорционально квадрату скорости полета, ибо в установившемся горизонтальном полете тяга равна лобовому сопротивлению самолета. В действительности тяга, развиваемая поршневым двигателем и винтом, с ростом скорости полета не только не увеличивается, а даже, как это будет показано ниже, уменьшается. Уже одно это говорит о том, что поршневой двигатель непригоден для скоростного полета.
Вся мощность, получаемая на валу поршневого авиационного двигателя, затрачивается на вращение воздушного винта. Большая часть этой мощности расходуется на создание тяги, т. е. на отбрасывание воздуха винтом. Другая, меньшая часть мощности расходуется на завихрение воздуха, закрутку воздушного потока за винтом и другие виды потерь. Эти потери учитываются коэффициентом полезного действия винта (к. п. д.), который показывает, какая доля мощности, получаемой на валу поршневого авиационного двигателя, затрачивается полезно, т. е. на создание тяги. Коэффициент полезного действия воздушного винта в обычных условиях достигает 80— 85%; остальные 15—20% мощности двигателя — это энергия, теряемая воздушным винтом без совершения полезной работы.
Если, допустим, мощность двигателя, передаваемая им винту, равна 1000 л. с., а к. п. д. винта равен 80%, то мощность, равная 200 л. с., теряется винтом бесполезно, а 800 л. с. затрачивается на полезную работу винта. Когда этот двигатель с винтом установлен на самолете, то полезной работой его в полете является работа продвижения самолета в окружающей воздушной среде, т. е. работа, затрачиваемая на преодоление воздушного сопротивления. Как известно, работа есть произведение силы на пройденный в направлении ее действия путь, а мощность, являющаяся секундной работой, может быть представлена как произведение силы на скорость движения. В нашем случае силой, производящей работу, является сила тяги. Поэтому полезная мощность N в лошадиных силах равна произведению силы тяги Р в килограммах на скорость полета V в метрах в секунду, т. е.
(деление на 75 связано с переходом от килограммометров к лошадиным силам). Если, например, скорость полета самолета V равна 100 м/сек, т. е. 360 км/час, то полезная мощность может быть выражена формулой
Значит, сила тяги Р, развиваемая винтом, будет равна
Если же скорость полета V увеличится до 200 м/сек, т. е. станет вдвое большей (720 км/час), то при той же полезной мощности 800 л. с. сила тяги винта будет равна
т. е. уменьшится вдвое.
Таким образом, тяга, развиваемая воздушным винтом, приводимым во вращение поршневым авиационным двигателем, и тяга, потребная для осуществления полета самолета, с ростом скорости полета меняются неодинаково, как это нужно было бы для непрерывного роста скорости. Мало того, их изменения оказываются диаметрально противоположными: потребная тяга быстро растет, а тяга воздушного винта падает.
Это расхождение между тягой, развиваемой воздушным винтом, и тягой, потребной для полета, и является той причиной, вследствие которой поршневой авиационный двигатель оказывается малопригодным для полета на больших скоростях. Чтобы получить большую тягу, потребную при увеличении скорости полета, на самолете необходимо установить и более мощные двигатели.
Но увеличение мощности двигателя скоростного самолета возможно лишь за счет значительного увеличения его размеров и веса. При этом неизбежно увеличиваются и размеры самолета, растет его сопротивление и, как следствие, снова увеличивается потребная тяга.
Поэтому установка нового, более мощного двигателя на самолете сравнительно немного увеличивает скорость его полета. Чем больше скорость полета, тем труднее, с помощью поршневого авиационного двигателя добиться нового увеличения скорости. Но еще хуже обстоит дело, когда скорость полета приближается к скорости звука. Из-за потерь, связанных со сжимаемостью воздуха при скоростях полета, близких к скорости звука, сопротивление летящему самолету увеличивается уже пропорционально не квадрату, а пятой и даже шестой степени скорости полета. Это значит, что для увеличения скорости полета всего на 10% винт должен развивать тягу, увеличенную почти на 80°/о. А так как мощность двигателя, как указывалось выше, при неизменном к. п. д. винта пропорциональна произведению тяги на скорость полета, то она должна при этом возрасти примерно в 2 раза!
Кроме того, следует учесть, что при значительном увеличении скорости полета и винт также начинает работать хуже. Это объясняется тем, что при движении лопасти винта с околозвуковой скоростью появляются известные нам неприятности, связанные с сжимаемостью воздуха. В результате при той же тяге на вращение винта приходится затрачивать большую мощность — к. п. д. винта падает.
Следовательно, при увеличении скорости полета на 10% мощность двигателя должна возрасти более чем в 2 раза. При этом размеры и вес двигателя должны остаться прежними, иначе потребная тяга увеличится и весь расчет придется начинать сначала.
Понятно, почему увеличение скорости полета и приближение ее к скорости звука оказались роковым для поршневого двигателя. Пробить «звуковой барьер» (рис. 6) поршневому двигателю не под силу. Для решения этой задачи потребовался двигатель принципиально другого типа. Слава поршневого двигателя как основного двигателя авиации закатилась.
Это не значит, конечно, что поршневые двигатели стали вовсе непригодными для авиации. Они все еще находят широкое применение и будут применяться в авиации долгое время. Но их применение ограничится самолетами с малой скоростью и главным образом большой продолжительностью полета. При этих условиях поршневые авиационные двигатели сохраняют свои достоинства.
Таким образом, поршневые авиационные двигатели уже не только перестали быть единственными двигателями авиации, какими они были в течение почти полувека ее развития, но и не занимают в ней ведущего положения, они отошли на второй план. Основное внимание уделяется теперь не им, а тем новым двигателям, которые пришли им на смену.

Рис. 6. «Звуковой барьер» — непреодолимое препятствие для самолетов с поршневыми двигателями (с увеличением высоты температура воздуха понижается, поэтому скорость звука уменьшается)
Что же это за двигатели, вызвавшие техническую революцию в авиации?
Это — реактивные двигатели.
Поделитесь на страничкеСледующая глава >
tech.wikireading.ru
Поршневой авиационный двигатель — это… Что такое Поршневой авиационный двигатель?
- Поршневой авиационный двигатель
4-тактный цикл двигателя внутреннего сгорания
Такты:
1.Всасывание горючей смеси.
2.Сжатие.
3.Рабочий ход.
4.Выхлоп.Двухтактный цикл.
Такты:
1. При движении поршня вверх — сжатие топливной смеси в текущем цикле и всасывание смеси для следующего цикла в полость под поршнем.
2. При движеннии поршня вниз — Рабочий ход, выхлоп и вытеснение топливной смеси из-под поршня в рабочую зону цилиндра.Блок цилиндров 4-х цилиндрового ДВС
Поршневой двигатель — двигатель внутреннего сгорания, в котором тепловая энергия, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень.
Поступательное движение поршня преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом.Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (болгарок, газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий.
Мощность поршневых двигателей внутреннего сгорания колеблется в пределах от нескольких ватт (двигатели авиа-, мото- и судомоделей) до 75 000 кВт (судовые двигатели).
В качестве топлива в поршневых двигателях внутреннего сгорания используются:
- жидкости — бензин, дизельное топливо, спирты, биодизель;
- газы — природный газ, водород, газообразные продукты крекинга нефти, биогаз;
- монооксид углерода, вырабатываемый в газогенераторе, входящем в состав топливной системы двигателя, из твёрдого топлива (уголь, торф, древесина).
Полный цикл работы двигателя складывается из последовательности тактов — однонаправленных поступательных ходов поршня. Различают двухтактные и четырёхтактные двигатели.
Число цилиндров в разных поршневых двигателях колеблется от 1-го до 24-х. Суммарный объём всех цилиндров обычно называют объёмом двигателя.Воспламенение воздушно-топливной смеси может выполняться одним из следующих способов:
- Воспламенение от сжатия рабочего тела. Эти двигатели подразделяются на:
- Дизельные, работающие на дизельном топливе или природном газе (с добавлением 5 % дизельного топлива для обеспечения воспламенения топливной смеси). В этих двигателях сжатию подвергается только воздух, а при достижении поршнем точки максимального сжатия в камеру сгорания впрыскиваеся топливо, которое воспламеняется при контакте с воздухом, нагретым при сжатии до температуры в несколько сотен градусов Цельсия.
- Компрессионные двигатели. В них, в отличие от дизельных, топливо подается вместе с воздухом (как в бензиновых двигателях). Такие двигатели требуют особого состава топлива (обычно в его основе — диэтиловый эфир) и точной регулировки степени сжатия, так как от нее зависит момент воспламенения смеси. Компрессионные двигатели используются главным образом в авиа- и автомоделях;
- Воспламенение от горячих частей двигателя (калоризаторные), обычно — днища поршня. Приводные двигатели прокатных станов (топливо-мартеновский газ).
В рамках технической термодинамики работа поршневых двигателей внутреннего сгорания взависимости от особенностей циклограмм их работы описывается термодинамическими циклами Отто, Дизеля, Тринклера, Аткинсона или Миллера.
Wikimedia Foundation. 2010.
- Поршнев Борис Фёдорович
- Поршневой двигатель
Смотреть что такое «Поршневой авиационный двигатель» в других словарях:
поршневой авиационный двигатель — традиционно принятое в авиации название поршневого двигателя внутреннего сгорания для привода воздушного и несущего винтов. В отличие от двигателей, устанавливаемых на автомобилях, тепловозах и др. наземных транспортных средствах, авиационные… … Энциклопедия техники
Авиационный двигатель — Запрос «Авиадвигатель» перенаправляется сюда; см. также другие значения. По теме Авиационный двигатель должна быть отдельная статья, а не страница разрешения неоднозначностей. После создания основной статьи страницу разрешения неоднозначностей,… … Википедия
авиационный двигатель — двигатель, предназначенный для использования на самолётах, вертолётах, дирижаблях и других летательных аппаратах. Главным отличием авиационных двигателей от двигателей, применяемых на других транспортных средствах, является большая мощность при… … Энциклопедия техники
М-22 (авиационный двигатель) — Bristol Jupiter Годы производства: 1920 е 1930 е Тип: Однорядовый, со звёздообразно расположенными цилиндрами Технические характеристики Объём: 28.7 л Мощность: 435 л.с. (325 кВт) при 1,575 оборотов в минуту … Википедия
Двигатель авиационный — тепловой двигатель для приведения в движение летательных аппаратов (самолётов, вертолётов, дирижаблей и пр.). С момента зарождения авиации и до конца Второй мировой войны единственным практически используемым Д.а. был поршневой двигатель… … Энциклопедия техники
Поршневой двигатель — см. в статье Двигатель авиационный. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994 … Энциклопедия техники
двигатель авиационный — Рис. 1. Зависимость тяги от скорости полёта. двигатель авиационный тепловой двигатель для приведения в движение летательных аппаратов (самолётов, вертолётов, дирижаблей и пр.). С момента зарождения авиации и до конца 2 й мировой войны… … Энциклопедия «Авиация»
двигатель авиационный — Рис. 1. Зависимость тяги от скорости полёта. двигатель авиационный тепловой двигатель для приведения в движение летательных аппаратов (самолётов, вертолётов, дирижаблей и пр.). С момента зарождения авиации и до конца 2 й мировой войны… … Энциклопедия «Авиация»
двигатель внутреннего сгорания — (ДВС), тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые ДВС; по рабочему циклу – непрерывного действия, двух – и… … Энциклопедия техники
поршневой двигатель — поршневой двигатель в статье Двигатель авиационный … Энциклопедия «Авиация»
dic.academic.ru
Поршневой двигатель самолета.
История поршневых двигателей насчитывает на несколько десятилетий больше, чем история самой авиации. Они сдвинули с места первый автомобиль, подняли в небо первый самолет и первый вертолет, прошли две Мировые войны и до сих пор используются в 99.9% автомобилей мира. Однако в авиации на сегодняшний день поршневые двигатели практически полностью вытеснены газотурбинными двигателями и используются исключительно в малоразмерных персональных либо спортивных самолетах.
Это произошло по причине того, что даже самый простой и неэффективный газотурбинный двигатель имеет большую удельную мощность (единица мощности на единицу массы двигателя), чем самый современный поршневой, а в авиации масса – исключительно важный параметр. Кроме того, газотурбинный двигатель более универсальный и может двигать самолет за счет реактивной струи, исключительно этот факт позволил самолетам достичь скоростей в 2, 3 или даже 4 раза выше скорости звука.
Но вернемся к поршневым двигателям. Как же они устроены? На схеме продемонстрировано устройство цилиндра четырехтактного бензинового двигателя воздушного охлаждения: 1 – впускной патрубок (подача топливно-воздушной смеси в цилиндр), 2 – стенка цилиндра (в данном случае ребристая с внешней стороны, для повышения охлаждаемой площади, поскольку цилиндр имеет воздушное охлаждение), 3 – поршень (возвратно-поступательным движением обеспечивает впуск смеси, ее сжатие, получение энергии и дальнейший вывод отработанных газов), 4, 5 – шатун и коленвал (преобразование возвратно-поступательного импульса в крутящий момент), 6 – свеча зажигания (дает искру, которая поджигает смесь), 7 – выхлопной патрубок (вывод отработанных газов), 8 – впускной и выпускной клапаны («открывают» цилиндр для входа смеси (впускной) и выхода отработанных газов (выпускной), герметизируют цилиндр во время сжатия и воспламенения. Следует отметить, что изображен лишь пример конструкции, но ее вариации могут быть значительными, к примеру цилиндры дизельных двигателей не имеют свечей зажигания, а если двигатель жидкостного охлаждения – отсутствуют «ребра», но присутствуют каналы для прогона охлаждающей жидкости и т.д. По количеству тактов (действия, происходящие поочередно в цилиндре двигателя) различают 3 типа двигателя – двухтактный, четырехтактный и шеститактный. Наиболее широко используемым является четырехтактный двигатель, четыре его такта показаны на схеме.
Коэффициент полезного действия самых современных поршневых двигателей не превышает 25-30%, т.е. реально около 70% всей энергии, получаемой во время сгорания топлива, превращается в тепло, которое необходимо выводить из двигателя. Система охлаждения очень важный компонент в силовой установке и во многом определяет ее характеристики. По типу вывода тепла (иначе охлаждения) двигатели подразделяются на воздушный и жидкостный тип.
И если в автомобилях воздушное охлаждение практически не используется, из-за своей низкой эффективности на малых скоростях и ее полного отсутствия при остановке, то в поршневой авиации двигатели воздушного охлаждения очень и очень широко используются, ведь имеют ряд преимуществ перед двигателями жидкостного охлаждения. А именно меньшая масса, соответственно большая удельная мощность и более простая, а значит и более надежная конструкция. Кроме того, из-за большой силы набегающего потока во время полета, эффективность охлаждения обычно достаточна для нормальной работы двигателя.
Большинство поршневых двигателей – многоцилиндровые, это необходимо для повышения мощности и общей их эффективности. В связи с этим их классифицируют по расположению цилиндров относительно коленвала. В пик своего развития, авиационные двигатели имели до 24 цилиндров, а некоторые, несерийные экземпляры и более. И основными, наиболее широко используемыми вариантами расположения цилиндров является V-образное, рядное и звездообразное.
Различить их нетрудно, ведь если смотреть спереди они и выглядят как буква V в первом случае, один ряд (колонна) – во втором случае, и звезда (или при наличии большого количества цилиндров — скорее блюдечко) в третьем. Традиционно два первых типа используют систему жидкостного охлаждения, в то время как последний – воздушного. Соответственно кроме вышеназванных преимуществ и недостатков двигателей по типу их охлаждения, можно еще добавить, что рядные двигатели компактные, могут быть установлены в перевернутом положении, но при наличии большого количества цилиндров, они получаются очень уж длинными.
V-образные имеют 2 цилиндра в ряду, соответственно они имеют в два раза меньшую длину, чем рядные, но зато менее компактны, хотя также могут быть установлены в перевернутом положении, имеют большее фронтальное сечение, а значит и большее лобовое сопротивление. Звездообразные, или радиальные двигатели, имеют цилиндры, распложенные вокруг коленвала, соответственно они наиболее громоздкие, имеют просто таки огромное фронтальное сечение и лобовое сопротивление, но благодаря этому могут эффективно охлаждаться набегающим потоком и имеют очень незначительные показатели длины.
Другие агрегаты
avia.pro
Почему поршневой авиационный двигатель уступил реактивному
Здравствуйте!

Легендарный ЯК-3, один из лучших поршневых…
Любой, даже мало сведущий в авиации человек знает, что время в котором мы с вами живем – это эра реактивной авиации. Поршневой авиационный двигатель с воздушным винтом хоть и не канул в лету, но позиции свои уже давно сдал. Однако далеко не все задаются вопросом: « А почему, собственно, так произошло? Чем поршневой хуже реактивного?» Ответ достаточно прост, как всегда :-).
Со времен первого полета Братьев Райт авиация совершенствовалась все ускоряющимися темпами. Очень быстро стало ясно, что для войны и армии она имеет очень большое значение. Уже в Первую Мировую пока еще примитивные самолеты достаточно активно участвовали в боевых действиях. А во Второй Мировой роль авиации была просто огромной. Одна из важнейших характеристик военного самолета (хотя в наше время не только военного :-)) – это скорость, и вполне естественно, что задача ее увеличения всегда стояла перед создателями самолетов.
Первоначально эта задача довольно успешно выполнялась. Начиная с 50-ти км/ч для первых аэропланов, она выросла уже в 20-х годах до 320 км/ч. Интересно, что в это время человек на самолете обогнал самую быструю птицу на свете – сокола-сапсана, который не летает быстрее 315-ти км/ч. А уже к началу второй мировой войны максимально достигнутая скорость была порядка 750 км/ч. И вот тут дело, так сказать, застопорилось :-). Несмотря на постоянную работу по модернизации поршневых авиационных двигателей и их движителей винтов, становилось ясно (уже в конце 30-х годов), что они близки к границе своих возможностей.

Fokker DR-1. Самолет Первой Мировой войны. На таком летал Красный Барон.
Основные причины две. Первая – это сам поршневой авиационный двигатель (точнее принцип его действия). Для лучшего понимания позволю все-таки себе привести маленькую формулу :-). Дело в том, что для любого двигателя есть такое понятие, как полезная мощность Р. Она равна произведению тяги двигателя R (создаваемой, как мы помним, воздушным винтом) на скорость движения летательного аппарата (т.е. на его перемещение в единицу времени) V: P = RV. Мощность поршневого двигателя при изменении скорости меняется мало, поэтому из формулы видно, что при увеличении скорости ( то самое, к чему мы стремимся :-)) тяга двигателя будет падать.
Однако это как раз то, что нам совсем не нужно. Ведь с ростом скорости увеличивается сопротивление воздуха и единственное, что мы можем ему противопоставить – это тяга. Надо, чтобы движок «тянул» ( иначе самолет совсем остановится ? (шучу)). Это сопротивление в зоне не очень больших скоростей увеличивается пропорционально квадрату скорости полета, а когда скорость полета приближается к скорости звука, то сопротивление уже растет пропорционально четвертой-шестой степени скорости полета. И для того, чтобы такое сопротивление преодолеть и далее разгонять самолет нужно мощность двигательной установки увеличивать пропорционально скорости полета в пятой-седьмой степени. Например, в околозвуковой области для того, чтобы увеличить скорость всего на 10%, нужно мощность двигателя увеличить вдвое.

Английский истребитель Supermarine Spitfire. Лучший истребитель наших союзников.
Но что такое мощность поршневого двигателя? Как бы не изощрялась наука и какие бы новые технологии не придумывались, в конечном итоге мощность зависит от количества цилиндров, площади поршней и т.д. То есть чем больше двигатель, тем он мощнее, а величина — это масса. А масса – это враг авиации. Зачастую при проектировании самолета идет битва чуть ли не за каждый грамм веса, особенно для истребителя. По примерным расчетам для совсем умеренной тяги в 3000 кг и средней скорости в 1000 км/ч масса авиационного поршневого двигателя составила бы примерно 15 тонн. Цифра совсем несуразная :-). Ведь, например, масса пустого истребителя СУ-27 – 16 тонн, МИГ-29, соответственно 10,9 тонны. И летают они с гораздо большей скоростью, чем 1000 км/ч. Думаю, здесь дальнейшие комментарии излишни :-)… Летать на больших скоростях с поршневым двигателем просто невозможно.
Однако считаю нужным упомянуть еще об одной причине, не напрямую, но все же касающейся нашего вопроса. Это воздушный винт. Для поршневого авиационного двигателя – это, к сожалению, единственный «преобразователь мощности в движение», то есть движитель. И у него существует такое неприятное явление, как «эффект запирания». Он выражается в том, что на больших скоростях при увеличении мощности винт уже не в состоянии увеличить тягу. Он как бы«запирается», становится «тормозом» ? . Физика этого явления достаточно сложна, но по простому говоря это объясняется тем, что определенные участки лопастей (особенно близкие к концам) при увеличении скорости вращения (или же увеличении диаметра винта, что равносильно увеличению скорости вращения для концов лопастей) начинают двигаться в воздухе с около- или сверхзвуковой скоростью. А это уже аэродинамика сверхзвука, и законы в ней работают другие. Традиционный винт на таких скоростях уже не может корректно выполнять свое предназначение. Стоит сказать, что довольно давно ведутся работы по созданию сверхзвуковых винтов, но пока ощутимых практических результатов не достигнуто.

Lockheed SR-71 Blackbird. Знаменитый американский разведчик. Максимальная скорость в 3,3 раза превышает скорость звука. Какие уж тут винты :-)…
Вот, пожалуй, и все. Таковы основные причины, из-за которых турбореактивный двигатель сменил поршневой и стал основой современной авиации. Произошло это главным образом из-за того, что поршневой движок проиграл «битву за вес». ТРД при одинаковой мощности несравнимо легче поршневого, и тяга его во всем диапазоне скоростей меняется вобщем–то мало, что значительно повышает его конкурентноспособность. Поршневой авиационный двигатель на малых скоростях конечно гораздо экономичнее, чем ТРД, но многолетняя практика человечества говорит о том, что коэффициент полезного действия не всегда в нашей жизни является определяющим.
Фотографии кликабельны.
Related posts:
- Поршневой авиационный двигатель.
- Двигатель самолета — это его сердце.
avia-simply.ru
поршневой авиационный двигатель — это… Что такое поршневой авиационный двигатель?
- поршневой авиационный двигатель
- поршнево́й авиацио́нный дви́гатель
-
традиционно принятое в авиации название поршневого двигателя внутреннего сгорания для привода воздушного и несущего винтов. В отличие от двигателей, устанавливаемых на автомобилях, тепловозах и др. наземных транспортных средствах, авиационные поршневые двигатели имеют большее число цилиндров (от 5 до 24), меньшую массу, лучшие экономические характеристики, способны работать в перевёрнутом состоянии и обладают большей надёжностью. Авиационные двигатели имеют воздушное или водяное охлаждение, способ охлаждения определяет конструкцию двигателя. В двигателях с жидкостным охлаждением цилиндры объединяют по 4–6 шт. в блоки (ряды), они имеют общую рубашку, внутри которой циркулирует охлаждающая жидкость. В одном двигателе может быть 2.4 или 6 блоков, размещаемых вдоль оси двигателя. В двигателях с воздушным охлаждением цилиндры размещают в плоскости, перпендикулярной оси двигателя, по 5–9 шт.; вместе эти цилиндры напоминают звезду или ромашку. У мощных двигателей могло быть до 4 звёзд (до 20–24 цилиндров). Цилиндры охлаждаются потоком встречного воздуха, для более эффективного охлаждения наружная поверхность корпусов цилиндров делается ребристой.
С появлением в 1950-х гг. воздушно-реактивных двигателей поршневые двигатели утратили доминирующее значение в авиации. Ныне их устанавливают лишь на легкомоторных спортивных, учебных, санитарных самолётах, на лёгких вертолётах, аэросанях и мотопланёрах.
авиационный двигатель»>
Поршневой авиационный двигатель
Энциклопедия «Техника». — М.: Росмэн. 2006.
.
- порт
- последовательное соединение
Смотреть что такое «поршневой авиационный двигатель» в других словарях:
Поршневой авиационный двигатель — 4 тактный цикл двигателя внутреннего сгорания Такты: 1.Всасывание горючей смеси. 2.Сжатие. 3.Рабочий ход. 4.Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх сжатие топливной смеси в текущем цикле и всасывание смеси для следующего… … Википедия
Авиационный двигатель — Запрос «Авиадвигатель» перенаправляется сюда; см. также другие значения. По теме Авиационный двигатель должна быть отдельная статья, а не страница разрешения неоднозначностей. После создания основной статьи страницу разрешения неоднозначностей,… … Википедия
авиационный двигатель — двигатель, предназначенный для использования на самолётах, вертолётах, дирижаблях и других летательных аппаратах. Главным отличием авиационных двигателей от двигателей, применяемых на других транспортных средствах, является большая мощность при… … Энциклопедия техники
М-22 (авиационный двигатель) — Bristol Jupiter Годы производства: 1920 е 1930 е Тип: Однорядовый, со звёздообразно расположенными цилиндрами Технические характеристики Объём: 28.7 л Мощность: 435 л.с. (325 кВт) при 1,575 оборотов в минуту … Википедия
Двигатель авиационный — тепловой двигатель для приведения в движение летательных аппаратов (самолётов, вертолётов, дирижаблей и пр.). С момента зарождения авиации и до конца Второй мировой войны единственным практически используемым Д.а. был поршневой двигатель… … Энциклопедия техники
Поршневой двигатель — см. в статье Двигатель авиационный. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994 … Энциклопедия техники
двигатель авиационный — Рис. 1. Зависимость тяги от скорости полёта. двигатель авиационный тепловой двигатель для приведения в движение летательных аппаратов (самолётов, вертолётов, дирижаблей и пр.). С момента зарождения авиации и до конца 2 й мировой войны… … Энциклопедия «Авиация»
двигатель авиационный — Рис. 1. Зависимость тяги от скорости полёта. двигатель авиационный тепловой двигатель для приведения в движение летательных аппаратов (самолётов, вертолётов, дирижаблей и пр.). С момента зарождения авиации и до конца 2 й мировой войны… … Энциклопедия «Авиация»
двигатель внутреннего сгорания — (ДВС), тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые ДВС; по рабочему циклу – непрерывного действия, двух – и… … Энциклопедия техники
поршневой двигатель — поршневой двигатель в статье Двигатель авиационный … Энциклопедия «Авиация»
dic.academic.ru