+7 (495) 720-06-54
Пн-пт: с 9:00 до 21:00, сб-вс: 10:00-18:00
Мы принимаем он-лайн заказы 24 часа*
 

Двигатель реактивного самолета: АВИАЦИОННЫЙ ДВИГАТЕЛЬ • Большая российская энциклопедия

0

Карта сайта

  • О центре
    • О центре
    • Подведомственные организации
    • Руководство
    • Наблюдательный совет
    • Экспертный совет
    • План деятельности
    • Партнёры
    • Нормативно-правовые документы
    • Антикоррупционная деятельность
    • Система менеджмента качества
  • Управление наукой
    • Создание научно-технического задела
      • Комплексные научно-технологические проекты
    • Методология
    • Стратегическое планирование и прогнозирование
  • Экспериментальная база
    • Развитие экспериментальной базы
    • ЦАГИ
    • ЦИАМ
    • СибНИА
    • ГкНИПАС
  • Издания центра
  • Статьи центра
  • Пресс-центр
    • Новости
    • Пресс-релизы НИЦ
    • СМИ о НИЦ
    • Медиагалерея
      • Фото
        • Фото
        • Видео
      • Видео
    • Пресс-кит
  • Контакты

Реактивный двигатель самолета

 

Реактивный двигатель самолета — двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

 

Для всех реактивных двигателей общим является то, что в процессе сгорания топлива и с последующим преобразованием потенциальной энергии продуктов сгорания в кинетическую происходит ускорение потока газов, и таким образом возникает тяга. Сила тяги (кг) является основной характеристикой двигателя.

Реактивные двигатели делятся на три группы:

  • жидкостные
  • пороховые
  • воздушно-реактивные

 

Для работы жидкостных реактивных двигателей не требуется кислород, содержащийся в воздухе. Двигатель может работать в сильно разряженной атмосфере. Для сгорания топлива должен быть предусмотрен запас окислителя. Наиболее известные комбинации — топливо-окислитель: спирт и кислород, водород и кислород, бензин и азотная кислота, водород и фтор, диборан и кислород и т. д.

В качестве горючего в пороховых реактивных двигателях используется порох.

В воздушно-реактивных двигателях используется кислород, содержащийся в воздухе.

В качестве топлива выступает керосин и очень редко — другой вид жидкого топлива.

Воздушно-реактивные двигатели, в свою очередь, классифицируются по двум признакам:

  1. бескомпрессорные (прямоточные, пульсирующие)
  2. компрессорные

 

В первом случае сжатие воздуха происходит за счет скоростного напора, во втором — за счет работы компрессора или мотокомпрессора.

В прямоточных воздушно-реактивных двигателях воздух атмосферы попадает во входной патрубок, при этом скорость воздуха уменьшается до 0, давление р повышается, температура t также возрастает. Под большим давлением воздух поступает в камеру сгорания, куда одновременно через форсунки поступает топливо. Горение происходит непрерывно. Продукты сгорания расширяются в реактивном стиле и выталкиваются в атмосферу. Особенностью двигателя, помимо его простоты конструкции, является то, что величина тяги зависит от скорости полета (скоростного напора) — тяга пропорциональна квадрату скорости полета.  

Также существует пульсирующий воздушно-реактивный двигатель.

Иностранные двигатели в отечественных самолетах ВОВ

Реактивная авиация во Второй мировой войне

Avia.pro

Реактивный двигатель — мотор, подаривший людям небо

Путешествуя на самолетах, вы задумывались когда-нибудь о том, как работает двигатель реактивного самолета? О реактивной тяге, которая приводит его в действие, знали еще в Античные времена. Применить же ее на практике смогли только в начале прошлого века, в результате гонки вооружений между Англией и Германией.

Принцип работы двигателя реактивного самолета довольно прост, но имеет некоторые нюансы, которые строго соблюдаются при их производстве. Чтобы самолет смог надежно держаться в воздухе, они должны работать идеально. Ведь от этого зависят жизни и безопасность всех, кто находится на борту самолета.

Блок: 1/5 | Кол-во символов: 609
Источник: https://nasamoletah.ru/poznavatelno/kak-rabotaet-reaktivnyj-dvigatel. html

Авиационные газотурбинные двигатели.

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Блок: 2/3 | Кол-во символов: 402
Источник: http://avia.pro/blog/gazoturbinnyy-dvigatel-foto-stroenie-harakteristiki

Принцип работы реактивного двигателя

За работу двигателя отвечает реактивная тяга. Для создания реактивной тяги необходима определенная жидкость, которая подается из задней части двигателя и по ходу ее продвижения увеличивается ее скорость движения вперед. Работу тяги отлично объясняет один из законов Ньютона, звучит он так «Любое действия вызывает равное противодействие».

Вместо жидкости в ТРД используется горючая смесь (газы и воздух со сгоревшими частичками топлива). Благодаря этой смеси самолет толкает вперед и позволяет ему лететь дальше.

Разработки таких двигателей начались в тридцатых годах. Первыми кто начал разрабатывать двигатели такого типа стали немцы и англичане. Но в гонке вооружений одержали победу ученные из Германии, так как они выпустили самый первый в мире самолет с ТРД под названием «Ласточка», данный самолет впервые взлетел в небеса над Люфтваффом. Спустя некоторое время появился и Английский самолет «Глостерский метеор»

Также сверхзвуковые двигатели принято считать турбореактивными, но они отличаются более совершенными модификациями, в отличие от ТРД.

Устройство двигателя имеет четыре главные детали, а именно:

  • Компрессор.
  • Камера горения.
  • Турбина.
  • Выхлоп.

Компрессор

В компрессоре находиться несколько турбин, с помощью которых происходит засасывание и сжатие воздуха. Во время сжатия воздуха, его давление и температура начинает нагнетаться и расти.

Камера горения

После того как воздух проходит турбину и его сжимает до необходимых размеров. Часть сжатого воздуха поступает в камеру горения, где воздух начинает смешиваться с топливом, после чего его поджигают. Благодаря этому увеличивается тепловая энергия воздуха. После смесь выходит из камеры с большой скорости и расширяется.

Турбина

После выхода эта смесь снова попадает в турбину, с помощью высокой энергии газа лопасти в турбине начинают свое вращение. Турбина тесно связанна с компрессором, который находиться в начале двигателя. Благодаря этому турбина начинает свою работу. Остатки воздуха выходят в выхлоп. В момент выхода смеси температура достигает рекордных размеров. Но она продолжает повышать свою температуру с помощью эффекта Дросселирования. После того как температура воздуха доходит до своего пика, она начинает идти на спад и выходит из турбины.

Блок: 2/4 | Кол-во символов: 2266
Источник: https://VPolete.online/interesnoe/turboreaktivnyiy-dvigatel. html

Особенности конструкции турбореактивного двигателя

ТРД состоит из следующих элементов:

  • входного устройства;
  • компрессора;
  • камеры сгорания;
  • турбины;
  • сопла.

Во время полета набегающий поток воздуха тормозится во входном устройстве: его скорость превращается в давление. Далее струя воздуха поступает в компрессор, который еще больше увеличивает степень ее сжатия. В камере сгорания происходит нагревание при сжигании топлива. Из нее предельно разогретый и сжатый поток направляется в турбину. Там газы совершают работу, вращая лопатки, которая передается компрессору и другим вспомогательным агрегатам.

Конструкция турбореактивного двигателя

При выходе из турбины ТРД газ имеет давление, значительно превосходящее атмосферное. Благодаря этому достигается высокая скорость его истечения из выходного сопла, что создает реактивную тягу.
В 60-е и 70-е годы прошлого столетия ТРД широко применялись на различных типах гражданских и военных самолетов. Позже им на смену пришли двухконтурные турбореактивные двигатели (ТРДД), имеющие лучший КПД, особенно при полетах на дозвуковых скоростях. По существу, сегодня они являются основными моторами современной авиации. Каков же принцип работы ВРД подобного типа?

Внутренний (первый) контур любого ТРДД представляет собой, по сути, обычный турбореактивный двигатель. Воздух, пройдя воздухозаборник, попадает в низконапорный компрессор, называемый еще вентилятором. После этого он разделяется на два потока: один, из которых попадает во внутренний контур, где проходит обычный для ТРД цикл, описанный выше. Второй входит в наружный контур, минуя турбину и камеру сгорания, и попадает в сопло, где смешивается с потоком, выходящим из первого контура. Такой тип двигателя называется ТРДД со смешением потоков.

Благодаря наличию внешнего контура общая скорость истечения газа из сопла уменьшается, что повышает тяговый КПД. Важнейшей характеристикой любого ТРДД является степень его двухконтурности – это отношение расхода воздуха через внутренний и внешний контур. Двигатели с большой степенью двухконтурности (выше 2) называются турбовентиляторными. Главным недостатком моторов этого типа является их значительные размеры и масса, а достоинством – высокая экономичность. Турбовентиляторными двигателями оснащается большинство коммерческих авиалайнеров и транспортных самолетов.

Существует несколько способов повышения эффективности работы ТРД и ТРДД:

  • форсажная камера;
  • регулируемое сопло;
  • управление вектором тяги.

Любой ТРД имеет резерв мощности: избыток кислорода в камере сгорания. Однако использовать его напрямую – через увеличение впрыска топлива – нельзя: более высокую температуру не выдерживают детали двигателя. Конструкторы выбрали другой путь, и он оказался правильным: между турбиной и соплом сжигается дополнительное топливо, что увеличивает температуру рабочего тела и значительно повышает тягу (до 1,5 раза). Форсажные камеры в основном устанавливаются на боевых самолетах.

Конструкция турбовентиляторного двигателя. Именно таким мотором оснащаются современные пассажирские лайнеры

Регулируемое сопло состоит из подвижных продольных элементов, управляя положением которых, можно изменять геометрию самой узкой части выходного отверстия двигателя. Это позволяет оптимизировать работу мотора на разных его режимах.

Управление вектором тяги производится с помощью специальных отклоняемых сопел, которые позволяют изменять поток рабочего тела относительно оси двигателя. Такая конструкция несколько усложняет управление самолетом, но существенно увеличивает его маневренность и взлетно-посадочные характеристики.

Блок: 5/7 | Кол-во символов: 3542
Источник: https://MilitaryArms.ru/novye-texnologii/reaktivnyj-dvigatel/

Как работает турбореактивный двигатель?

Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших пассажирских лайнерах. Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.

Турбореактивный двигатель самолета несет с собой лишь топливо, а окислитель — воздух — нагнетается турбиной из атмосферы. В остальном принцип его работы совпадает с тем же, что и у реактивного.

Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.

Схема турбореактивного двигателя.

Именно они вырабатывают тяговые усилия, необходимые для ускорения самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.

В процессе производства лопастей они проходят через процесс монокристаллизации, что придает им твердости и прочности.

Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.

Блок: 3/5 | Кол-во символов: 1284
Источник: https://nasamoletah.ru/poznavatelno/kak-rabotaet-reaktivnyj-dvigatel.html

Устройство реактивного двигателя

С первого взгляда кажется устройство конструкции реактивной установки достаточно простым, однако характеристики использования топлива и его сгорания требуют применения высокопрочных материалов.

На рисунке 4 изображено устройство реактивного двигателя.

Рисунок 4 — Устройство реактивного двигателя

Из рисунка 4 видно, что на входе в аппарат установлен вентилятор всасывающий воздух в двигатель. Вентилятор состоит из мощных и объемных по размеру лопастей, которые, как правило, изготавливаются из титана. Далее вслед за вентилятором установлен многоступенчатый турбокомпрессор для подачи воздуха непосредственно в камеру, где происходит сгорание рабочего тела.

После воспламенения и сгорания поток реактивных газов направляется на рабочие лопатки турбоагрегата, чем и приводят его во вращение. На валу турбины горячей ступени имеется жесткая связь с компрессором, который вращается от работы турбины.

Отработанный газовый вихрь через сопла набирает реактивную скорость и покидает полость аппарата. Для предотвращения перегрева и расплавки на сопла подводится охлаждающий воздух от турбокомпрессора по специальным каналам в корпусе двигателя.

Блок: 4/5 | Кол-во символов: 1202
Источник: https://principraboty.ru/princip-raboty-reaktivnogo-dvigatelya/

Применение

Сфера применения двухконтурных турбореактивных двигателей очень широкая. Они смогли охватить практически всю авиацию, потеснив собой ТРД и ТВД. Главный недостаток реактивных моторов – их неэкономичность – удалось частично победить, так что сейчас большинство гражданских и практически все военные самолеты оснащены ТРДД. Для военной авиации, где важны компактность, мощность и легкость моторов, используются ТРДД с малой степенью двухконтурности (к<1) и форсажными камерами. На пассажирских и грузовых самолетах устанавливаются ТРДД  со степенью двухконтурности к>2, что позволяет сэкономить немало топлива на дозвуковых скоростях и снизить стоимость перелетов.

Двухконтурные турбореактивные двигатели с малой степенью двухконтурности на военном самолете.

СУ-35 с установленными на нем 2мя двигателями АЛ-41Ф1С

Преимущества и недостатки

Двухконтурные турбореактивные двигатели имеют огромное преимущество в сравнении с ТРД в виде значительного сокращения расхода топлива без потерь мощности. Но при этом их конструкция более сложная, а вес намного больше. Понятно, что чем больше значение степени двухконтурности, тем экономичнее мотор, но это значение можно увеличить только одним способом – за счет увеличения диаметра второго контура, что даст возможность пропустить через него больше воздуха. Это и есть основным недостатком ТРДД. Достаточно посмотреть на некоторые ТВРД, устанавливаемые на крупные гражданские самолеты, чтобы понять, как они утяжеляют общую конструкцию. Диаметр их второго контура может достигать нескольких метров, а в целях экономии материалов и снижения их массы он выполняются более коротким, чем первый контур. Еще один минус крупных конструкций – высокое лобовое сопротивление во время полета, что в некоторой степени снижает скорость полета. Использование ТРДД в целях экономии топлива оправдано на дозвуковых скоростях, при преодолении звукового барьера реактивная тяга второго контура становится малоэффективной.

Различные конструкции и использование дополнительных конструктивных элементов в каждом отдельном случае позволяет получить нужный вариант ТРДД. Если важна экономия, устанавливаются турбовентиляторные двигатели с большим диаметром и высокой степенью двухконтурности. Если нужен компактный и мощный мотор, используются обычные ТРДД с форсажной камерой или без нее. Главное здесь найти компромисс и понять, какие приоритеты должны быть у конкретной модели. Военные истребители и бомбардировщики не могут оснащаться двигателями с трехметровым диаметром, да им это и не нужно, ведь в их случае приоритетны не столько экономия, сколько скорость и маневренность. Здесь же чаще используются и ТРДД с форсажными камерами (ТРДДФ) для увеличения тяги на сверхзвуковых скоростях или при запуске. А для гражданской авиации, где сами самолеты имеют большие размеры, вполне приемлемы крупные и тяжелые моторы с высокой степенью двухконтурности.

Блок: 4/4 | Кол-во символов: 2909
Источник: http://zewerok.ru/trdd/

Как производят реактивные двигатели для моделей самолетов?

Их производство для моделей самолетов занимает около 6 часов. Сначала вытачивается базовая пластина из алюминия, к которой крепятся все остальные детали. По размеру она совпадает с хоккейной шайбой.

К ней прикрепляют цилиндр, поэтому получается что-то вроде консервной банки. Это будущий двигатель внутреннего сгорания. Далее устанавливается система подачи топлива. Чтобы его закрепить, в основную пластину вкручиваются шурупы, предварительно опущенные в специальный герметик.

Двигатель для модели самолета.

Каналы стартера крепятся с другой стороны камеры, чтобы перенаправлять выбросы газа в турбинное колесо. В отверстие сбоку от камеры сгорания устанавливается спираль накаливания. Она поджигает топливо внутри двигателя.

Потом ставят турбину и центральную ось цилиндра. На нее ставят колесо компрессора, которое нагнетает воздух в камеру сгорания. Его проверяют с помощью компьютера, прежде чем закрепить пусковую установку.

Готовый двигатель еще раз проверяют на мощность. Его звук немногим отличается от звука двигателя самолета. Он, конечно, меньшей силы, но полностью напоминает его, придавая больше схожести модели.

Блок: 5/5 | Кол-во символов: 1178
Источник: https://nasamoletah.ru/poznavatelno/kak-rabotaet-reaktivnyj-dvigatel.html

Разновидности реактивных двигателей

Существует несколько реактивных двигателей отличающихся по своему принципу работы и подобию. Так, принцип работы ядерного двигателя, в основу которого положена синтезная реакция разложения химического элемента, к примеру — урана.

Данный элемент помещается в реактор. Туда же подводится при помощи турбонасосов рабочее вещество. Распылительными форсунками производится его рассеивание по рабочей камере, в которой происходит контакт с химическим ураном. В результате выделяется энергия большой силы, которая и является движущей.

Не смотря на всю конфиденциальность и секретность информации о ядерном вооружении стран во всем мире, самую большую опасность представляет крылатая ракета, работающая на ядерном топливе.

Системы противовоздушной обороны настолько совершенны, что обмануть простыми полетами и маневрами уже не так-то просто. В этом случае и выступает на передний план ядерный двигатель. Увы, принцип работы ядерного двигателя для крылатой ракеты недоступен и, вряд ли, когда-нибудь будет раскрыт для общественности.

, для нас это очень важно:

Блок: 5/5 | Кол-во символов: 1154
Источник: https://principraboty.ru/princip-raboty-reaktivnogo-dvigatelya/

Прямоточные воздушно-реактивные двигатели

ПВРД – самый простой тип реактивного двигателя по своему устройству. В нем вообще нет движущихся частей. Повышенное давление, необходимое для работы, достигается за счет торможения встречного потока воздуха. Любой ПВРД состоит из трех компонентов:

  • диффузора;
  • камеры сгорания;
  • сопла.

В диффузоре уменьшается скорость потока воздуха и повышается его давление, затем в камере сгорания он нагревается за счет окисления топлива, после чего происходит расширение рабочего тела в сопле и возникает реактивная тяга. Существуют три вида ПВРД:

  • дозвуковые;
  • сверхзвуковые;
  • гиперзвуковые.

Дозвуковые ПВРД имеют очень низкий термический КПД, поэтому серийно в настоящее время не используются.

На сверхзвуковой скорости прямоточный двигатель весьма эффективен, при скорости в 3 Маха степень повышения давления вполне сравнимо с аналогичным показателем ТРД.

Гиперзвуковой прямоточный реактивный двигатель (ГПВРД) предназначен для полетов на скоростях выше 5 Махов. Сегодня созданием подобных силовых установок занимаются во многих странах мира, но они все еще остаются на уровне единичных прототипов.

Гиперзвуковые летательные аппараты будущего, скорее всего, будут оснащаться ПРВД

Прямоточный реактивный двигатель неработоспособен на земле и малоэффективен на низких скоростях полета. Поэтому его нередко используют с различными разгонными устройствами: пороховыми ускорителями или же запуск ЛА с ПРВД производится с самолетов-носителей. Подобные ограничения определяют область возможного применения летательных аппаратов с ПВРД: обычно это боевые системы одноразового использования. Примером могут служить крылатые ракеты «Оникс» и «Брамос».

Отдельно следует упомянуть о ядерных прямоточных двигателях, разработка которых велась в 60-е и 70-е годы. Воздух в таких силовых установках нагревался за счет тепла работающего ядерного реактора, размещенного в камере сгорания. Американцы даже сумели построить подобное устройство и провели его огневые испытания. Однако дальше этого дело не пошло, и проект был закрыт.

Блок: 6/7 | Кол-во символов: 2026
Источник: https://MilitaryArms.ru/novye-texnologii/reaktivnyj-dvigatel/

Пульсирующие воздушно-реактивные двигатели

ПуВРД – это один из первых типов реактивных моторов, использование которых началось еще во время Второй мировой войны. Гитлеровцы устанавливали их на крылатые ракеты Фау-1, применявшиеся для обстрелов Британии.

У пульсирующего реактивного двигателя тяга образуется не постоянно, а в виде серии импульсов, следующих с определенной частотой. Он состоит из диффузора, камеры сгорания и цилиндрического сопла. Между камерой сгорания и диффузором установлен специальный клапан. Цикл работы ПуВРД выглядит следующим образом:

  1. Клапан открыт, и воздух свободно поступает в камеру сгорания. Одновременно происходит впрыск топлива;
  2. Топливно-воздушная смесь поджигается – давление резко повышается и закрывает клапан. Рабочее тело истекает из сопла, образуя реактивную тягу;
  3. Давление в камере сгорания падает, клапан в диффузоре под напором входящего воздуха открывается. Цикл начинается сначала.

Пульсирующий характер работы ПуВРД делает его менее эффективным по сравнению с двигателями с постоянным процессом горения. Такие моторы шумны и неэкономичны, зато очень просты и дешево стоят. В настоящее время ПуВРД используются мало: их устанавливают на БПЛА, летающие мишени, также они нашли свое применение в авиамоделировании.

Самый известный случай использования ПуВРД — немецкая крылатая ракета Фау-1

Не будет преувеличением сказать, что создание реактивного двигателя подарило человечеству небо. Благодаря этому устройству самолет превратился из орудия войны в массовый вид транспорта, которым ежегодно пользуются сотни миллионов человек. Однако история реактивного двигателя отнюдь не закончена. Техника и технологии не стоят на месте. Возможно, уже в ближайшие годы появятся новые типы реактивных двигателей, которые позволят нам летать с гиперзвуковой скоростью и наконец-то достигнуть других планет.

Блок: 7/7 | Кол-во символов: 1831
Источник: https://MilitaryArms.ru/novye-texnologii/reaktivnyj-dvigatel/

Кол-во блоков: 12 | Общее кол-во символов: 18403
Количество использованных доноров: 6
Информация по каждому донору:
  1. https://VPolete.online/interesnoe/turboreaktivnyiy-dvigatel.html: использовано 1 блоков из 4, кол-во символов 2266 (12%)
  2. https://nasamoletah.ru/poznavatelno/kak-rabotaet-reaktivnyj-dvigatel.html: использовано 3 блоков из 5, кол-во символов 3071 (17%)
  3. http://avia.pro/blog/gazoturbinnyy-dvigatel-foto-stroenie-harakteristiki: использовано 1 блоков из 3, кол-во символов 402 (2%)
  4. https://MilitaryArms. ru/novye-texnologii/reaktivnyj-dvigatel/: использовано 3 блоков из 7, кол-во символов 7399 (40%)
  5. http://zewerok.ru/trdd/: использовано 1 блоков из 4, кол-во символов 2909 (16%)
  6. https://principraboty.ru/princip-raboty-reaktivnogo-dvigatelya/: использовано 2 блоков из 5, кол-во символов 2356 (13%)

Знакомьтесь, это GE9X — самый большой реактивный двигатель в мире

В конце прошлого месяца Федеральное управление гражданской авиации США утвердило крупнейший в мире коммерческий реактивный двигатель. Называется он GE9X, и в первую очередь будет использоваться в новом широкофюзеляжном самолете Boeing 777x, по одной штуке под каждым крылом. Этот самолет впервые совершил полет еще в январе этого года и может похвастаться складывающимися законцовками крыльев — в разложенном виде они делают крылья длиннее, тем самым повышая подъемную силу и делая полеты более экономичными, а в сложенном позволяют самолету занимать меньше места на стоянке или в ангаре.

Жадные до топлива четырехдвигательные реактивные самолеты, такие как Boeing 747 и Airbus A380, в наши дни уже явно устарели, и от них массово отказываются крупные авиакомпании. А вот самолеты с двумя мощными двигательными установками олицетворяют как настоящее, так и будущее авиаперевозок. Чтобы поднять в воздух огромный Boeing 777x, нужны два очень мощных двигателя, тяги которых буквально хватит для ракет. Вот описание GE9X в цифрах.

47.5 тонн тяги — хватит для выхода на орбиту

Каждый двигатель может производить по 47.5 тонн тяги, что в сумме составляет 95 тонн для Boeing 777x. Более того, на испытаниях движок смог выдать 60 тонн тяги — это рекорд для реактивных двигателей. Они настольно мощные, что Пэт Доннеллан, инженер по программе двигателей GE9X, говорит, что пилотам, вероятно, не нужно будет доводить тягу двигателей до максимума, чтобы оторвать самолет от земли. Фактически, выведение движка на максимальную мощность для взлета известно как «взлет на полной тяге», объясняет он, но нет причин делать это, если в этом нет необходимости. «Вам просто нужно взлететь, а не насиловать двигатели», — добавляет он.

Доннеллан сравнивает это с вождением: при обычной езде вы не кладете педаль газа в пол, если в этом нет необходимости. Он говорит, что для типичных взлетов, когда соблюдается правильная развесовка самолета (так называемые «взлеты с пониженными номинальными характеристиками»), движкам Boeing 777x и близко не придется выходить на максимальную тягу.


Испытательный стенд с GE9X.

Для сравнения, тяга первой ступени ракета-носителя «Союз-2» на уровне моря составляет «всего лишь» 85.6 тонн. Тяга каждого движка последней модификации известного четырехмоторного Boeing 747-8 составляет около 30 тонн, то есть нужно три таких движка, чтобы потягаться с двумя GE9X.

Вентилятор диаметром 3.5 метра

Именно такие размеры имеет нагнетающий воздух вентилятор в передней части двигателя, если считать расстояние между краями диаметрально противоположенных лопастей. Если вы встанете на краю гондолы, то даже вытянув вверх руку вы не сможете коснуться кончиками пальцев ее верхнего края.

Этот «крутилятор» — звезда шоу, когда дело доходит до создания тяги. «Поскольку 777x оказался достаточно большим, нам нужен был двигатель, который обеспечивал бы уровень тяги, который требовал авиаконструктор», — говорит Доннеллан, имея в виду компанию Boeing, «и при этом был очень эффективным. Чтобы добиться этого с турбовентиляторным двигателем нам пришлось сделать вентилятор большого размера».

16 полутораметровых лопастей

Именно такое количество специально изогнутых лопастей из углеродного волокна используется в вентиляторе движка GE9X. У его предшественников, GE90 и GENX, было 22 и 18 лопастей соответственно. Однако меньше в данном случае не значит хуже: новые лопасти могут производить больше подъемной силы благодаря изменениям в дизайне. «У них более широкая хорда — от передней до задней кромки», — говорит Доннеллан. «Лопасти более скручены в нужных областях, чтобы генерировать дополнительную подъемную силу, когда она вам нужна», — добавляет он. Он также отмечает, что лопасти нового вентилятора похожи на крылья, вращающиеся в двигателях.

Печка на 2400 градусов


Схема GE9X.

Разумеется, при работе внутренности реактивного движка сильно нагреваются. Внутренние компоненты турбовентиляторного двигателя сложны, но нам достаточно знать, что в него входит турбина низкого давления, турбина высокого давления, камера сгорания и компрессор. Воздух в компрессоре, как понятно из названия, сжимается. «То, что мы пытаемся сделать — это сжать нагнетаемый воздух до минимально возможного объема, который мы только можем создать», — говорит Доннеллан. «В дальнейшем мы помещаем этот максимально сжатый воздух в камеру сгорания».

На этом моменте в нашем уравнение появляется еще один компонент — топливо. «Мы поджигаем топливо в камере сгорания, в результате чего сжатый воздух очень быстро и сильно расширяется и проходит через турбину высокого давления, заставляя ее вращаться». В результате вырабатывается энергия, часть которой затем тратится на питание турбины низкого давления, которая приводит в действие вентилятор спереди.

Самая горячая часть двигателя — турбина высокого давления. «Она находится прямо за камерой сгорания», — говорит Доннеллан. Температуры там такие же, как у лавы в жерле вулкана, и достигают 2400 градусов. Чтобы движок не разрушился от такого нагрева, для создания турбины используются керамические матричные композитные материалы. «Они могут выдерживать гораздо более высокие температуры, чем существующие на текущий момент металлические сплавы», — добавляет Доннеллан.

4 метра в диаметре и почти 10 тонн веса


Наглядное сравнение человека и движка GE9X.

Разумеется, в рабочем турбореактивном двигателе вентилятор не крутится снаружи, как пропеллер. Он заключен в специальную рамку. По-научному этот округлый «футляр» называется передним корпусом вентилятора. Одна из целей этого корпуса состоит в том, чтобы он «окутывал» кончики лопастей вентилятора, дабы те могли засасывать воздух только спереди для обеспечивания максимальной эффективности.

Кроме того, в случае повреждения двигателя в целях безопасности нужно, чтобы обломки оставались внутри него, а не выбрасывались наружу, что потенциально может привести к повреждению крыла или фюзеляжа. По оценкам Доннеллана, корпус вентилятора увеличивает размер двигателя примерно на 15-20 сантиметров, а если учесть дополнительный внешний обтекаемый каркас, называемый гондолой, то, как сообщается, весь двигатель приобретает размер более 4 метров в поперечнике. Это примерно длина достаточно просторной четырехместной Toyota Corolla.

Ну и под конец — вес этого гиганта составляет без малого 10 тонн, так что увезти его сможет не каждый КамАЗ. Хотя такая цифра не кажется чрезмерной, если учесть мощность движка и то, что он создан из тяжелых стойких высокотемпературных сплавов с относительно небольшим количеством пластика и композитных материалов.


iGuides в Telegram — t.me/igmedia
iGuides в Яндекс.Дзен — zen.yandex.ru/iguides. ru

Принцип работы реактивного и турбореактивного двигателя самолета и ракеты

Современный мир трудно представить без самолетов. Авиация прочно вошла в нашу жизнь и помогает путешественникам преодолевать тысячи километров за считанные часы, что, в еще недавнем прошлом, казалось фантастикой. Не говоря уже о полетах в космос и путешествиях к дальним планетам. Все это стало возможным благодаря изобретению реактивных двигателей. Давайте разберемся в принципе их работы.

Первые двигатели появились давным-давно и преобразовывали мускульную силу животных в полезную для достижения конкретной цели энергию. Простейший пример – лошадь, помогающая крутить эернова мельницы. Затем появились ветряные мельницы, где жернова приходили в движение за счет энергии ветра, иди водяные мельницы, использующие течение рек.

Двигатели, работающие на топливе

Общество сразу по достоинству оценило преимущества использование простейших двигателей и в последующие годы многие ученые трудились над разработкой моделей, работа которых не зависела бы от природных и погодных условий, усталости животного, выступающего в качестве источника энергии. Гюйгенс ван Зейлихем Наибольшего успеха на этом поприще добился голландский физик Христиан Гюйгенс ван Зейлихем, который в 1687 году первым предложил использовать порох в качестве источника энергии. Согласно замыслу, в двигателе создавалась камера внутреннего сгорания, в которой должен был сжигаться порох, а выделенная в результате горения энергия, преобразовываться в силу, приводящую определенный элемент в движение. Порох являлся первым прототипом современного топлива.

Примечательно, что идея была позаимствована у артиллеристов, наблюдая за которыми, Гюйгенс обратил внимание на то, что после выстрела, орудия откатывались в сторону, противоположную выстрелу.

Наработки голландца, а также ряда других заслуженных ученых, значительно облегчили путь создания топливных двигателей, которыми мы пользуемся до сих пор. На место пороха пришли бензин и солярка, обладающие иными физическими свойствами и температурами горения, необходимыми для выделения энергии.

Явление отдачи

Шло время, наука не стояла на месте. На смену простейшим механическим двигателям пришли паровые, топливные, электрические.

Но научные поиски и разработки на этом не прекращались. Как всегда, на помощь пришла природа, которая, в большинстве случаев и наталкивает изобретателей на удивительные открытия.

Наблюдения за морскими жителями, такими как осьминоги, кальмары и каракатицы, привели к неожиданным результатам. Манера движения этих морских обитателей, была схожа с кратковременным толчком. Будто тело отталкивается отчего – то и продвигается вперед.

Эти наблюдения были чем-то схожи с замечаниями Гюегенса про выстрел и пушку, которые мы упоминали выше.

Таким образом, в физики появилось понятие «явление отдачи». В ходе дальнейших научных исследований было выяснено, что именно благодаря явлению отдачи происходит все движение на планете Земля: автомобиль отталкивается от земли, корабль – от воды и т.д.

Движение тел происходит благодаря передаче импульса от одного объекта другому. Для объяснения явления приведем простейший пример: вы решили толкнуть своего товарища в плечо, приложили определенную силу, в результате которой, он сдвинулся с места, но и вы испытали силу, отталкивающую вас в противоположную сторону.

Конечно, расстояние, на которое сдвинетесь вы и ваш друг, будет зависеть от ряда факторов: сколько вы весите, как сильно вы его толкнули.

Реактивный двигатель и принцип его работы

Таким образом, мы постепенно подошли к рассмотрению самого распространенного в самолетостроении и ракетной отрасли типа двигателя – реактивный двигатель.

Любой из нас способен воочию наблюдать явление реактивной реакции. Все что необходимо, надуть воздушный шарик и отпустить. Каждый знает, что произойдет далее: из шарика будет вырываться поток воздуха, который будет двигать тело шарика в противоположном направлении.

Согласитесь, очень похоже на то, как кальмар, сокращая свои мышцы, создает струю воды, толкающую его в противоположном направлении.

Наблюдения, описанные выше, получили точные научные объяснения, были отображены в физических законах:

  • закон сохранения импульса;
  • третий закон Ньютона.

Именно на них основывается принцип работы реактивного двигателя: в двигатель поступает поток воздуха, который сгорает в камере внутреннего сгорания, смешиваясь с топливом, в результате чего образуется реактивная струя, заставляющая тело двигаться вперед.

Принцип работы достаточно прост, однако устройство подобного двигателя довольно сложное и требует точнейших расчетов.

Устройство реактивного двигателя

Реактивный двигатель состоит из следующих основных элементов:

  • компрессор, который засасывает в двигатель поток воздуха;
  • камера внутреннего сгорания, где происходит смешивание топлива с воздухом, их горение;
  • турбина – придает дополнительное ускорение потоку тепловой энергии, полученной в результате горения топлива и воздуха;
  • сопло, важнейший элемент, который преобразует внутреннюю энергию в «движущую силу» – кинетическую энергию.

Благодаря совместному взаимодействию этих элементов, на выходе реактивного двигателя образуется мощнейшая реактивная струя, придающая объектам, на которых установлен двигатель, высочайшую скорость.

Реактивные двигатели в самолете

В преддверии Мировой Войны, ученые ведущих стран старательно трудились над разработками самолетов с реактивными двигателями, которые бы позволили их странам безоговорочно диктовать свои условия на небесном фронте.

Первый реактивный самолет был разработан немцами в 1937 году, а его испытания начались лишь в 1939 году. Однако имеющиеся на то время двигатели потребляли невероятно большое количество топлива и запас хода такого самолета составлял всего лишь 60 км.

В это же время Японии и Великобритании удалось создать собственные самолеты с реактивными двигателями. Но это были лишь опытные экземпляры, так и не поступившие в серийное производство.

Первым серийным реактивным самолетом стал немецкий «Мессершмит», который, однако, не позволил гитлеровской коалиции взять верх в развязанной ими войне.

Мессершмитт Me-262 Швальбе/Штурмфогель

В гражданской же авиации реактивные самолеты появились лишь в 1952 году в Великобритании.

С тех пор и по настоящие дни, реактивные двигатели являются основными двигателями, применяемыми в самолетостроении. Именно благодаря им, современны лайнеры развивают скорость до 800 километров в час.

Реактивные двигатели в космосе

После освоения неба человечество поставило перед собой задачу покорить космос.

Как вы уже поняли, наиболее мощным двигателем, способным поднять ракету на высоту во много тысяч километров, являлся именно реактивный двигатель.

Конечно, возникает вопрос: как может работать реактивный двигатель в космосе, в безвоздушном пространстве?

В устройстве ракеты предусмотрен резервуар с кислородом, который смешивается с ракетным топливом и образует необходимую тягу полета ракеты, когда космический корабль покидает атмосферу Земли.

Затем приходит в действие закон сохранения импульса: масса ракеты постепенно уменьшается, сгоревшая смесь топлива и кислорода выбрасывается через сопло в одну сторону, а тело ракеты движется в противоположную.

Китайские ученые создали прототип реактивного двигателя на воздухе

https://ria.ru/20200506/1571028781.html

Китайские ученые создали прототип реактивного двигателя на воздухе

Китайские ученые создали прототип реактивного двигателя на воздухе

Китайские физики продемонстрировали прототип реактивного двигателя, не использующего горючее топливо. Движущей силой в нем выступает струя сжатой плазмы,... РИА Новости, 06.05.2020

2020-05-06T14:30

2020-05-06T14:30

2020-05-06T14:30

наука

двигатели

физика

открытия - риа наука

наса

китай

технологии

/html/head/meta[@name='og:title']/@content

/html/head/meta[@name='og:description']/@content

https://cdn22.img.ria.ru/images/07e4/05/06/1571021772_0:0:1440:810_1920x0_80_0_0_f209343917ebd9f665b030398a8a02bc.jpg

МОСКВА, 6 мая — РИА Новости. Китайские физики продемонстрировали прототип реактивного двигателя, не использующего горючее топливо. Движущей силой в нем выступает струя сжатой плазмы, получаемая непосредственно из воздуха. Описание разработки приведено в журнале AIP Advances.В реактивных двигателях современных самолетов и ракет импульс, которой толкает аппарат вперед, создается за счет мощной струи сжигаемого топлива. Ученые из Уханьского университета в Китае разработали устройство, которое сжимает воздух и ионизирует его микроволнами, генерируя мощную струю плазму. Пока это только прототип, но результаты демонстрируют практическую возможность изготовления экологически чистого и бесшумного двигателя для самолетов, который использует только электричество и окружающий воздух в качестве топлива."Мотивация нашей работы состояла в том, чтобы помочь решить проблемы глобального потепления из-за того, что люди используют двигатели внутреннего сгорания для такой техники, как автомобили и самолеты, — приводятся в пресс-релизе Американского института физики слова руководителя исследования, Джау Тана (Jau Tang), профессора Уханьского университета. — Наши результаты показали, что двигатель на основе микроволновой воздушной плазмы может быть потенциально жизнеспособной альтернативой обычному реактивному двигателю на ископаемом топливе".Изготовленный учеными прототип смог поднять в воздух стальной шарик весом в один килограмм над кварцевой трубкой диаметром 24 миллиметра. Исследователи отмечают, что в пересчете на собственную массу создаваемая прототипом тяга сравнима с показателями обычных реактивных двигателей. Метод получения реактивной плазмы, который применили авторы разработки, принципиально отличается от предыдущих попыток создания плазменных реактивных двигателей тем, что в нем в качестве вещества плазмы используется обычный воздух. Ранее, например, в реактивном двигателе космического зонда НАСА Dawn, применялась ксеноновая плазма, которая не способна преодолеть трение в атмосфере Земли, и поэтому не обладает достаточной мощностью для использования в воздушном транспорте.Плазма — это четвертое состояние вещества, помимо твердого тела, жидкости и газа. В природе плазма существует на поверхности Солнца или внутри разряда молнии. Но это состояние может быть получено и искусственным путем. Новый плазменный реактивный двигатель генерирует высокотемпературную плазму высокого давления на месте, используя только впрыскиваемый воздух и электричество. Мощный компрессор сжимает воздух, который, проходя под высоким давлением через ионизационную микроволновую камеру, превращается в плазменную струю.На сегодняшний день углекислый газ, выбрасываемый при сгорании топлива в двигателях коммерческих самолетов — не считая военных — составляет около 2,5 процентов от всех выбросов парниковых газов. Авторы надеются, что их разработка создаст предпосылки для начала производства реактивных двигателей, не использующих ископаемое топливо. В настоящее время ученые работают над повышением эффективности своего устройства для достижения этой цели.

https://ria.ru/20191017/1559806864.html

https://ria.ru/20190716/1556569652.html

китай

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2020

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn23. img.ria.ru/images/07e4/05/06/1571021772_77:0:1346:952_1920x0_80_0_0_6ae482a5006d7297af4c74411efc3c8e.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

двигатели, физика, открытия - риа наука, наса, китай, технологии

МОСКВА, 6 мая — РИА Новости. Китайские физики продемонстрировали прототип реактивного двигателя, не использующего горючее топливо. Движущей силой в нем выступает струя сжатой плазмы, получаемая непосредственно из воздуха. Описание разработки приведено в журнале AIP Advances.В реактивных двигателях современных самолетов и ракет импульс, которой толкает аппарат вперед, создается за счет мощной струи сжигаемого топлива. Ученые из Уханьского университета в Китае разработали устройство, которое сжимает воздух и ионизирует его микроволнами, генерируя мощную струю плазму.

Пока это только прототип, но результаты демонстрируют практическую возможность изготовления экологически чистого и бесшумного двигателя для самолетов, который использует только электричество и окружающий воздух в качестве топлива.

"Мотивация нашей работы состояла в том, чтобы помочь решить проблемы глобального потепления из-за того, что люди используют двигатели внутреннего сгорания для такой техники, как автомобили и самолеты, — приводятся в пресс-релизе Американского института физики слова руководителя исследования, Джау Тана (Jau Tang), профессора Уханьского университета. — Наши результаты показали, что двигатель на основе микроволновой воздушной плазмы может быть потенциально жизнеспособной альтернативой обычному реактивному двигателю на ископаемом топливе".

17 октября 2019, 09:00НаукаУченые изучили особенности сгорания топлива для создания новых двигателей

Изготовленный учеными прототип смог поднять в воздух стальной шарик весом в один килограмм над кварцевой трубкой диаметром 24 миллиметра. Исследователи отмечают, что в пересчете на собственную массу создаваемая прототипом тяга сравнима с показателями обычных реактивных двигателей.

Метод получения реактивной плазмы, который применили авторы разработки, принципиально отличается от предыдущих попыток создания плазменных реактивных двигателей тем, что в нем в качестве вещества плазмы используется обычный воздух. Ранее, например, в реактивном двигателе космического зонда НАСА Dawn, применялась ксеноновая плазма, которая не способна преодолеть трение в атмосфере Земли, и поэтому не обладает достаточной мощностью для использования в воздушном транспорте.

Плазма — это четвертое состояние вещества, помимо твердого тела, жидкости и газа. В природе плазма существует на поверхности Солнца или внутри разряда молнии. Но это состояние может быть получено и искусственным путем. Новый плазменный реактивный двигатель генерирует высокотемпературную плазму высокого давления на месте, используя только впрыскиваемый воздух и электричество. Мощный компрессор сжимает воздух, который, проходя под высоким давлением через ионизационную микроволновую камеру, превращается в плазменную струю.

На сегодняшний день углекислый газ, выбрасываемый при сгорании топлива в двигателях коммерческих самолетов — не считая военных — составляет около 2,5 процентов от всех выбросов парниковых газов. Авторы надеются, что их разработка создаст предпосылки для начала производства реактивных двигателей, не использующих ископаемое топливо.

В настоящее время ученые работают над повышением эффективности своего устройства для достижения этой цели.

16 июля 2019, 12:41НаукаРоссийские ученые разработали новые способы борьбы с тряской самолета

Краткая история реактивной гражданской авиации. Реактивный самолет – самый мощный летательный аппарат современной авиации Реактивные самолеты в ссср

Современной молодежи, и даже гражданам зрелым, трудно понять, какой восторг вызывали эти, казавшиеся тогда фантастическими, летающие машины. Серебристые капельки, стремительно рассекающие за собой голубое небо, будоражили воображение молодых людей начала пятидесятых. Широкий не оставлял сомнений в типе двигателя. Сегодня только компьютерные игры наподобие War Thunder, с их предложением приобрести реактивный акционный самолет СССР, дают какое-то представление об этом этапе развития отечественной авиации. Но начиналось все еще раньше.

Что означает «реактивный»

Возникает резонный вопрос о названии типа летательных аппаратов. По-английски оно звучит кратко: Jet. Русское определение намекает на наличие какой-то реакции. Ясно, что речь идет не об окислении топлива - оно присутствует и в обычных карбюраторных самолета такой же, как у ракеты. Реакция физического тела на силу выбрасываемой газовой струи выражается в придании ему противоположно направленного ускорения. Все остальное - уже тонкости, к которым относятся разные технические параметры системы, такие как аэродинамические свойства, схема, профиль крыла, тип двигателя. Здесь возможны варианты, к которым инженерные бюро пришли в процессе работы, часто находя сходные технические решения, независимо друг от друга.

Отделить ракетные исследования от авиационных в данном аспекте тяжело. В области пороховых ускорителей, устанавливаемых для сокращения длины разбега и форсажа, работы велись еще до войны. Более того, попытка установки компрессорного двигателя (неудачная) на аэроплан Coanda в 1910 году позволила изобретателю Анри Коанде утверждать о румынском приоритете. Правда, конструкция эта была изначально неработоспособной, что и подтвердилось первым же испытанием, в ходе которого летательный аппарат сгорел.

Первые шаги

Первый реактивный самолет, способный проводить в воздухе длительное время, появился позже. Пионерами стали немцы, хотя определенных успехов добились ученые других стран - США, Италии, Британии и отсталой тогда в техническом отношении Японии. Эти образцы представляли собой, по сути, планеры обычных истребителей и бомбардировщиков, на которые устанавливались двигатели нового типа, лишенные пропеллеров, что вызывало удивление и недоверие. В СССР этой проблемой инженеры также занимались, но не так активно, делая упор на проверенную и надежную винтовую технику. Тем не менее реактивная модель самолета Би-1, оснащенная ТРД конструкции А. М. Люльки, была испытана непосредственно перед войной. Аппарат был очень ненадежен, азотная кислота, используемая в качестве окислителя, проедала топливные баки, были и другие проблемы, но первые шаги всегда трудны.

«Штурмфогель» Гитлера

В силу особенностей психики фюрера, надеявшегося сокрушить «врагов рейха» (к которым он причислял страны практически всего остального мира), в Германии после начала II мировой войны развернулись работы по созданию разных видов «чудо-оружия», в том числе и реактивных самолетов. Не все направления этой деятельности оказались безуспешными. К удачным проектам можно отнести «Мессершмит-262» (он же «Штурмфогель») - первый реактивный самолет в мире, выпускаемый серийно. Аппарат был оснащен двумя ТРД, имел радиолокатор в носовой части, развивал скорость, близкую к звуковой (более 900 км/ч), и оказался достаточно эффективным средством борьбы с высотными Б-17 («Летающими крепостями») союзников. Фанатичная вера Адольфа Гитлера в чрезвычайные возможности новой техники, однако, парадоксально сыграла скверную роль в боевой биографии Ме-262. Проектировавшийся как истребитель, он, по указанию «свыше», переоборудовался в бомбардировщик, и в этой модификации не проявил себя в полной мере.

«Арадо»

Принцип реактивного самолета был применен в середине 1944 года для конструкции бомбардировщика «Арадо-234» (опять же немцами). Он успел продемонстрировать свои необычайные боевые возможности, атаковав позиции союзников, высадившихся в районе порта Шербур. Скорость в 740 км/ч и десятикилометровый потолок не давали шансов зенитной артиллерии поразить эту цель, а американские и английские истребители просто не смогли его догнать. Помимо бомбометания (весьма неточного по понятным причинам), «Арадо» производил аэрофотосъемку. Второй опыт применения его в качестве ударного средства состоялся над Льежем. Потерь немцы не понесли, и если бы ресурсов у фашистской Германии было больше, и промышленность смогла бы выпустить «Ар-234» в количестве более 36 экземпляров, то странам антигитлеровской коалиции пришлось бы туго.

«Ю-287»

Немецкие наработки попали в руки дружественных в период Второй мировой воны государств после разгрома нацизма. Западные страны уже в ходе завершающего этапа боевых действий начали готовиться к грядущему противостоянию с СССР. Сталинское руководство принимало встречные меры. Обеим сторонам было ясно, что в следующей войне, если она состоится, сражаться будут реактивные самолеты. СССР на тот момент еще не обладал ударным ядерным потенциалом, шла лишь работа над созданием технологии производства атомной бомбы. А вот американцам был очень интересен захваченный «Юнкерс-287», имевший уникальные летные данные (боевая нагрузка 4000 кг, дальность 1500 км, потолок 5000 м, скорость 860 км/ч). Четыре двигателя, отрицательная стреловидность (прообраз будущих «невидимок) позволяли использовать самолет в качестве атомного носителя.

Первые послевоенные

Реактивные самолеты не сыграли решающей роли во время Второй мировой, поэтому основная часть советских производственных мощностей сосредоточила усилия на совершенствовании конструкций и увеличении выпуска обычный винтовых истребителей, штурмовиков и бомбардировщиков. Вопрос о перспективном носителе атомных зарядов был трудным, и его решили оперативно, скопировав американский Боинг Б-29 (Ту-4), но главной целью оставалось противодействие возможной агрессии. Для этого в первую очередь требовались истребители - высотные, маневренные и, конечно же, скоростные. О том, как развивалось новое направление можно судить по письму конструктора А. С. Яковлева в ЦК (осень 1945 года), нашедшего определенное понимание. Простое изучение трофейной немецкой техники партийное руководство сочло недостаточной мерой. Стране были необходимы современные советские реактивные самолеты, не уступающие, а превосходящие мировой уровень. На параде 1946 года в честь годовщины Октября (Тушино) их нужно было показать народу и зарубежным гостям.

Временные Яки и МиГи

Показать было что, но не сложилось: подвела погода, стоял туман. Демонстрацию новой авиатехники перенесли на Первомай. Первые советские реактивные самолеты, произведенные серией в 15 экземпляров, были разработаны КБ Микояна и Гуревича (МиГ-9) и Яковлева (Як-15). Оба образца отличались реданной схемой, при которой хвостовая часть снизу омывается реактивными струями, выпускаемыми соплами. Естественно, для защиты от перегрева эти участки обшивки покрыли специальным слоем, выполненным из тугоплавкого металла. Оба самолета отличались массой, числом двигателей и назначением, но в целом отвечали состоянию советской авиастроительной школы конца сороковых годов. Главным их назначением был переход на новый тип энергоустановки, но помимо этого выполнялись и другие важные задачи: обучение летного состава и отработка технологических вопросов. Эти реактивные самолеты, несмотря на большие объемы их выпуска (сотни штук), рассматривались как временные и подлежащие замене в самое ближайшее время, сразу же после появления более совершенных конструкций. И вскоре этот момент настал.

Пятнадцатый

Этот самолет стал легендой. Он строился невиданными для мирного времени сериями, как в боевом, так и в спаренном учебном варианте. В конструкции МиГ-15 применены многие революционные технические решения, впервые сделана попытка создания надежной системы спасения пилота (катапульты), его оснастили мощным пушечным вооружением. Скорость реактивного самолета, небольшого, но очень эффективного, позволяла ему одерживать победы над армадами тяжелых стратегических бомбардировщиков в небе Кореи, где заполыхала война вскоре после появления нового перехватчика. Неким аналогом МиГа стал американский «Сейбр», построенный по сходной схеме. В ходе боевых действий техника попадала в руки противника. Советский самолет угнал северокорейский летчик, соблазненный огромным денежным вознаграждением. Подбитого «американца» удалось вытащить из воды и доставить в СССР. Происходил взаимный «обмен опытом» с перениманием наиболее удачных конструкторских решений.

Пассажирские реактивные

Скорость реактивного самолета - главное его достоинство, и применимо оно не только к бомбардировщикам и истребителям. Уже в конце сороковых на международные авиалинии вышел лайнер «Комета», построенный в Британии. Он создавался специально для перевозки людей, был комфортабельным и быстрым, но, к сожалению, не отличался надежностью: в течение двух лет случилось семь катастроф. Но прогресс в области скоростных пассажироперевозок уже остановить было нельзя. В середине пятидесятых в СССР появился легендарный Ту-104, конверсионная версия бомбардировщика Ту-16. Несмотря на многочисленные летные происшествия, происходившие с новой авиатехникой, реактивные самолеты все в большей степени овладевали авиалиниями. Постепенно формировался облик перспективного лайнера и представления о том, каким он должен быть. движители) применялись конструкторами все реже.

Поколения истребителей: первое, второе…

Как практически любая техника, реактивные перехватчики классифицируются по поколениям. Всего их в настоящее время пять, и они отличаются не только годами выпуска моделей, но и конструктивными особенностями. Если концепция первых образцов в своей основе имела наработанную базу достижений в области классической аэродинамики (иными словами, лишь тип двигателя был главным их отличием), то второе поколение имело более существенные признаки (стреловидное крыло, совершенно иная форма фюзеляжа и пр. ) В пятидесятые годы существовало мнение о том, что воздушный бой уже никогда не будет носить маневренного характера, но время показало ошибочность такого мнения.

… и с третьего по пятое

«Собачьи свалки» шестидесятых между «Скайхоками», «Фантомами» и МиГами в небе над Вьетнамом и Ближним Востоком указали ход дальнейшего развития, ознаменовав приход второго поколения реактивных перехватчиков. Изменяемая геометрия крыла, способность многократного звука и ракетное вооружение в сочетании с мощной авионикой стали признаками третьей генерации. В настоящее время основу парка ВВС наиболее развитых в техническом отношении стран составляют машины четвертого поколения, ставшие продуктом дальнейшего развития. На вооружение уже поступают еще более совершенные образцы, сочетающие высокую скорость, сверхманевренность, малую заметность и средства РЭБ. Это поколение пятое.

Двухконтурные двигатели

Внешне и сегодня реактивные самолеты первых образцов не выглядят в своем большинстве анахронизмами. Вид многих из них вполне современен, а технические характеристики (такие как потолок и скорость) не слишком отличаются от современных, по крайней мере, на первый взгляд. Однако при более тщательном ознакомлении с ТТХ этих машин становится ясно, что в последние десятилетия совершен качественный прорыв в двух главных направлениях. Во-первых, появилось понятие переменного вектора тяги, создающего возможность резкого и неожиданного маневра. Во-вторых, сегодня способны намного дольше находиться в воздухе и преодолевать большие расстояния. Этот фактор обусловлен малым расходом топлива, то есть экономичностью. Достигается он применением, выражаясь техническим языком, двухконтурной схемы (низкая степень двухконтурности). Специалистам известно, что указанная технология сжигания топлива обеспечивает более полное его сгорание.

Другие признаки современного реактивного самолета

Их несколько. Современные гражданские реактивные самолеты отличаются низким шумом двигателей, повышенным комфортом и высокой стабильностью в полете. Обычно они широкофюзеляжные (в том числе и многопалубные). Образцы военной авиатехники оснащены средствами (активными и пассивными) достижения малой радиолокационной заметности и В каком-то смысле требования к оборонным и коммерческим образцам сегодня пересекаются. Экономичность нужна самолетам всех типов, правда, по разным причинам: в одном случае для повышения рентабельности, в другом - для расширения боевого радиуса. И шуметь сегодня нужно как можно меньше как гражданским, так и военным.

Утром 27 марта 1943 года первый советский реактивный истребитель «БИ-1» взлетел с аэродрома НИИ ВВС Кольцово в Свердловской области. Проходил седьмой по счету испытательный полет на достижение максимальной скорости. Достигнув двухкилометровой высоты и набрав скорость около 800 км/ч, самолет на 78-й секунде после выработки топлива неожиданно перешел в пике и столкнулся с землей. Сидевший за штурвалом опытный летчик-испытатель Г. Я. Бахчиванджи погиб. Эта катастрофа стала важным этапом в развитии самолетов с жидкостными ракетными двигателями в СССР, но хотя работы по ним и продолжались до конца 1940-х годов, данное направление развития авиации оказалось тупиковым. Тем не менее эти первые, хотя и не слишком удачные шаги оказали серьезное влияние на всю дальнейшую историю послевоенного развития советского авиа- и ракетостроения…

Вступление в «реактивный» клуб

«За эрой аэропланов винтовых должна следовать эра аэропланов реактивных…» - эти слова основоположника реактивной техники К. Э. Циолковского стали получать реальное воплощение уже в середине 1930-х годов ХХ века.

К этому моменту стало ясно, что дальнейшее значительное увеличение скорости полета самолетов за счет возрастания мощности поршневых моторов и более совершенной аэродинамической формы практически невозможно. На самолетах должны были устанавливаться моторы, мощность которых не могла быть уже увеличена без чрезмерного возрастания массы двигателя. Так, для увеличения скорости полета истребителя с 650 до 1000 км/ч необходимо было мощность поршневого мотора увеличить в 6 (!) раз.

Было очевидно, что на смену поршневому двигателю должен был прийти реактивный, который, имея меньшие поперечные размеры, позволял бы достигать больших скоростей, давая большую тягу на единицу веса.


Реактивные двигатели разделяются на два основных класса: воздушно-реактивные, которые используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы, и ракетные двигатели, содержащие все компоненты рабочего тела на борту и способные работать в любой среде, в том числе и в безвоздушной. К первому типу относятся турбореактивные (ТРД), пульсирующие воздушно-реактивные (ПуВРД) и прямоточные воздушно-реактивные (ПВРД), а ко второму — жидкостные ракетные (ЖРД) и твердотопливные ракетные (ТТРД) двигатели.

Первые образцы реактивной техники появились в странах, где традиции в области развития науки и техники и уровень авиационной промышленности были чрезвычайно высоки. Это, в первую очередь, Германия, США, а также Англия, Италия. В 1930 г. проект первого ТРД запатентовал англичанин Фрэнк Уиттл, затем первую рабочую модель двигателя собрал в 1935 г. в Германии Ганс фон Охайн, а в 1937-м француз Рене Ледюк получил правительственный заказ на создание ПВРД…

В СССР же практическая работа над «реактивной» тематикой велась главным образом в направлении жидкостных ракетных двигателей. Основоположником ракетного двигателестроения в СССР был В. П. Глушко. Он в 1930 г., тогда сотрудник Газодинамической лаборатории (ГДЛ) в Ленинграде, являвшейся в то время единственным КБ в мире по разработке твердотопливных ракет, создал первый отечественный ЖРД ОРМ-1. А в Москве в 1931-1933 гг. ученый и конструктор Группы изучения реактивного движения (ГИРД) Ф. Л. Цандер разработал ЖРД ОР-1 и ОР- 2.

Новый мощный импульс развитию реактивной техники в СССР придало назначение М. Н. Тухачевского в 1931 г. на пост заместителя наркома обороны и начальника вооружения РККА. Именно он настоял на принятии в 1932 г. постановления Совнаркома «О разработке паротурбинных и реактивных двигателей, а также самолетов на реактивной тяге…». Начатые после этого работы в Харьковском авиационном институте позволили только к 1941 г. создать рабочую модель первого советского ТРД конструкции А. М. Люльки и способствовали старту 17 августа 1933 г. первой в СССР жидкостной ракеты ГИРД-09, которая достигла высоты 400 м.


Но отсутствие более ощутимых результатов подтолкнуло Тухачевского в сентябре 1933 г. к объединению ГДЛ и ГИРД в единый Реактивный научно-исследовательский институт (РНИИ) во главе с ленинградцем, военным инженером 1 ранга И. Т. Клейменовым. Его заместителем был назначен будущий Главный конструктор космической программы, москвич С. П. Королев, который через два года в 1935 г. был назначен начальником отдела ракетных летательных аппаратов. И хотя РНИИ подчинялся управлению боеприпасов Наркомата тяжелой промышленности и основной его темой была разработка ракетных снарядов (будущей «Катюши»), Королеву удалось вместе с Глушко рассчитать самые выгодные конструктивные схемы аппаратов, типы двигателей и систем управления, виды топлива и материалов. В результате в его отделе к 1938 г. была разработана экспериментальная система управляемого ракетного оружия, включающая проекты жидкостных крылатой «212» и баллистической «204» ракет дальнего действия с гироскопическим управлением, авиационных ракет для стрельбы по воздушным и наземным целям, зенитных твердотопливных ракет с наведением по световому и радиолучу.

Стремясь получить поддержку военного руководства и в разработке высотного ракетоплана «218», Королев обосновал концепцию ракетного истребителя-перехватчика, способного за несколько минут достигать большой высоты и атаковать самолеты, прорвавшиеся к защищаемому объекту.

Но развернувшаяся в армии после ареста Тухачевского волна массовых репрессий докатилась и до РНИИ. Там была «раскрыта» контрреволюционная троцкистская организация, а ее «участники» И. Т. Клейменов, Г. Э. Лангемак расстреляны, а Глушко и Королев осуждены на 8 лет лагерей.

Эти события затормозили развитие реактивной техники в СССР и позволили вырваться вперед европейским конструкторам. 30 июня 1939 г. немецкий пилот Эрих Варзиц поднял в воздух первый в мире реактивный самолет с ЖРД конструктора Гельмута Вальтера «Хейнкель» He-176, достигнув скорости в 700 км/ч, а через два месяца и первый в мире реактивный самолет с ТРД «Хейнкель» He-178, оснащенный двигателем Ганса фон Охайна, «HeS-3 B» с тягой 510 кг и скоростью 750 км/ч. Через год в августе 1940 г. взлетел итальянский «Капрони-Кампини N1», а в мае 1941 г. совершил свой первый полет британский «Глостер Пионер» Е.28/29 с ТРД «Уиттл» W-1 конструктора Фрэнка Уиттла.

Таким образом, лидером в реактивной гонке становилась нацистская Германия, которая кроме авиационных программ начала осуществлять и ракетную программу под руководством Вернера фон Брауна на секретном полигоне в Пенемюнде…


Но все-таки, хотя массовые репрессии в СССР и нанесли существенный ущерб, но не смогли остановить все работы по столь очевидной реактивной тематике, которые начал еще Королев. В 1938 г. РНИИ был переименован в НИИ-3, теперь «королевский» ракетоплан «218-1» стал обозначаться «РП- 318-1». Новые ведущие конструкторы инженеры А. Щербаков, А. Палло заменили ЖРД ОРМ-65 «врага народа» В. П. Глушко на азотно-кислотно-керосиновый двигатель «РДА-1-150» конструкции Л. С. Душкина.

И вот почти после года испытаний в феврале 1940 г. состоялся первый полет «РП-318-1» на буксире за самолетом «Р 5». Летчик-испытатель?В. П. Федоров на высоте 2800 м отцепил буксировочный трос и запустил ракетный двигатель. За ракетопланом появилось небольшое облачко от зажигательного пиропатрона, потом бурый дым, затем огненная струя длиной около метра. «РП-318-1», развив максимальную скорость — всего лишь в 165 км/ч, перешел в полет с набором высоты.

Это скромное достижение все же позволило СССР вступить в члены довоенного «реактивного клуба» ведущих авиационных держав…

«Ближний истребитель»

Успехи немецких конструкторов не прошли незамеченными для советского руководства. В июле 1940 г. Комитет обороны при Совнаркоме принял постановление, определившее создание первых отечественных самолетов с реактивными двигателями. В постановлении, в частности, предусматривалось решение вопросов «о применении реактивных двигателей большой мощности для сверхскоростных стратосферных полетов»…

Массированные налеты люфтваффе на британские города и отсутствие в Советском Союзе достаточного количества радиолокационных станций выявили необходимость создания истребителя-перехватчика для прикрытия особо важных объектов, над проектом которого с весны 1941 г. начали работать молодые инженеры А. Я. Березняк и А. М. Исаев из ОКБ конструктора В. Ф. Болховитинова. Концепция их ракетного перехватчика с двигателем Душкина или «ближнего истребителя» опиралась на предложение Королева, выдвинутое еще в 1938 г.

«Ближний истребитель» при появлении самолета противника должен был быстро взлететь и, обладая высокой скороподъемностью и скоростью, догнать и уничтожить врага в первой атаке, затем после выработки топлива, используя запас высоты и скорости, спланировать на посадку.

Проект отличался необычайной простотой и дешевизной — вся конструкция должна была быть цельнодеревянной из клееной фанеры. Из металла изготовлялись рама двигателя, защита пилота и шасси, которые убирались под воздействием сжатого воздуха.

С началом войны Болховитинов привлек к работе над самолетом все ОКБ. В июле 1941 г. эскизный проект с пояснительной запиской был отправлен Сталину, и в августе Государственный комитет обороны принял решение о срочной постройке перехватчика, который был необходим частям ПВО Москвы. Согласно приказу по Наркомату авиапромышленности на изготовление машины отводилось 35 дней.

Самолет, получивший название «БИ» (ближний истребитель или, как в дальнейшем интерпретировали журналисты, «Березняк — Исаев») строили почти без детальных рабочих чертежей, вычерчивая на фанере его части в натуральную величину. Обшивка фюзеляжа выклеивалась на болванке из шпона, затем крепилась к каркасу. Киль выполнялся заодно с фюзеляжем, как и тонкое деревянное крыло кессонной конструкции, и обтягивался полотном. Деревянным был даже лафет для двух 20-мм пушек ШВАК с боезапасом из 90 снарядов. ЖРД Д-1 А-1100 устанавливался в хвостовой части фюзеляжа. Двигатель расходовал 6 кг керосина и кислоты в секунду. Общий запас топлива на борту самолета, равный 705 кг, обеспечивал работу двигателя в течение почти 2 мин. Расчетная взлетная масса самолета «БИ» составляла 1650 кг при массе пустого 805 кг.


В целях сокращения времени создания перехватчика по требованию заместителя наркома авиационной промышленности по опытному самолетостроению А. С. Яковлева планер самолета «БИ» был исследован в натурной аэродинамической трубе ЦАГИ, a на аэродроме летчик-испытатель Б. Н. Кудрин начал пробежки и подлеты на буксире. С разработкой силовой установки пришлось изрядно повозиться, поскольку азотная кислота разъедала баки и проводку и оказывала вредное воздействие на человека.

Однако все работы были прерваны в связи с эвакуацией ОКБ на Урал в поселок Белимбай в октябре 1941 г. Там с целью отладки работы систем ЖРД смонтировали наземный стенд — фюзеляж «БИ» с камерой сгорания, баками и трубопроводами. К весне 1942 г. программа наземных испытаний была завершена. Вскоре с конструкцией самолета и стендовой испытательной установкой ознакомился выпущенный из тюрьмы Глушко.

Летные испытания уникального истребителя поручили капитану Бахчиванджи, который совершил 65 боевых вылетов на фронте и сбил 5 немецких самолетов. Он предварительно освоил управление системами на стенде.

Утро 15 мая 1942 г. навсегда вошло в историю отечественной космонавтики и авиации, взлетом с грунта первого советского самолета с жидкостным реактивным двигателем. Полет, который продолжался 3 мин 9 сек на скорости 400 км/ч и при скороподъемности — 23 м/с, произвел сильное впечатление на всех присутствующих. Вот как об этом вспоминал Болховитинов в 1962 г.: «Для нас, стоявших на земле, этот взлет был необычным. Непривычно быстро набирая скорость, самолет через 10 секунд оторвался от земли и через 30 секунд скрылся из глаз. Только пламя двигателя говорило о том, где он находится. Так прошло несколько минут. Не скрою, у меня затряслись поджилки».

Члены государственной комиссии отметили в официальном акте, что «взлет и полет самолета «БИ-1» с ракетным двигателем, впервые примененным в качестве основного двигателя самолета, доказал возможность практического осуществления полета на новом принципе, что открывает новое направление развития авиации». Летчик-испытатель отмечал, что полет на самолете «БИ» в сравнении с обычными типами самолетов исключительно приятен, а по легкости управления самолет превосходит другие истребители.

Через день после испытаний в Билимбае была устроена торжественная встреча и митинг. Над столом президиума висел плакат: «Привет капитану Бахчиванджи, летчику, совершившему полет в новое!».


Вскоре последовало решение ГКО о постройке серии из 20 самолетов «БИ- ВС», где в дополнение к двум пушкам перед кабиной летчика устанавливалась бомбовая кассета, в которой размещалось десять мелких противосамолетных бомб массой по 2,5 кг.

Всего на истребителе «БИ» было совершено 7 испытательных полетов, каждый из которых фиксировал лучшие летные показатели самолета. Полеты проходили без летных происшествий, лишь при посадках случались незначительные повреждения шасси.

Но 27 марта 1943 г. при разгоне до скорости 800 км/ч на высоте 2000 м третий опытный экземпляр самопроизвольно перешел в пикирование и врезался в землю неподалеку от аэродрома. Комиссия, расследовавшая обстоятельства катастрофы и гибели летчика-испытателя Бахчиванджи, не смогла установить причины затягивания самолета в пике, отмечая, что еще не изучены явления, происходящие при скоростях полета порядка 800 -1000 км/ч.

Катастрофа больно ударилa по репутации ОКБ Болховитинова — все недостроенные перехватчики «БИ-ВС» были уничтожены. И хотя позднее в 1943-1944 гг. проектировалась модификация «БИ-7» с прямоточными воздушно-реактивными двигателями на концах крыла, а в январе 1945 г. летчик Б. Н. Кудрин выполнил последние два полета на «БИ-1», все работы по самолету были прекращены.

И все-таки ЖРД

Наиболее успешно была реализована концепция ракетного истребителя в Германии, где с января 1939 г. в специальном «Отделе L» фирмы «Мессершмитт», куда из немецкого планерного института перешел профессор А. Липпиш со своими сотрудниками, шла работа над «проектом Х» — «объектовым» перехватчиком «Me-163» «Комет» с ЖРД, работающим на смеси гидразина, метанола и воды. Это был самолет нетрадиционной «безхвостой» схемы, который ради максимального снижения веса взлетал со специальной тележки, а садился на выдвигаемую из фюзеляжа лыжу. Первый полет на максимальной тяге летчик-испытатель Дитмар выполнил в августе 1941 г. , а уже в октябре на нем впервые в истории была преодолена отметка в 1000 км/ч. Потребовалось более двух лет испытаний и доводки, прежде чем «Ме-163» был запущен в серию. Он стал первым самолетом с ЖРД, участвовавшим в боях с мая 1944 г. И хотя до февраля 1945 г. было выпущено более 300 перехватчиков, в строю находилось не более 80 боеготовых самолетов.

Боевое применение истребителей «Ме-163» показало несостоятельность концепции ракетного перехватчика. Из-за большой скорости сближения немецкие пилоты не успевали точно прицелиться, а ограниченный запас топлива (только на 8 минут полета) не давал возможности для второй атаки. После выработки топлива на планировании перехватчики становились легкой добычей американских истребителей — «Мустангов» и «Тандерболтов». До окончания боевых действий в Европе «Ме-163» сбили 9 самолетов противника, потеряв при этом 14 машин. Однако потери от аварий и катастроф в три раза превышали боевые. Ненадежность и малый радиус действия «Ме-163» способствовали тому, что руководством люфтваффе были запущены в серийное производство другие реактивные истребители «Ме- 262» и «Не-162».

Руководство советской же авиапромышленности в 1941-1943 гг. было сосредоточено на валовом выпуске максимального количества боевых самолетов и улучшении серийных образцов и не было заинтересовано в развитии перспективных работ по реактивной технике. Таким образом, катастрофа «БИ-1» поставила крест и на других проектах советских ракетных перехватчиков: «302» Андрея Костикова, «Р-114» Роберто Бартини и «РП» Королева. Здесь сыграло свою роль то недоверие, которое заместитель Сталина по опытному самолетостроению Яковлев испытывал к реактивной технике, считая ее делом еще очень далекого будущего.

Но сведения из Германии и стран союзников стали причиной того, что в феврале 1944 г. Государственный комитет обороны в своем постановлении указал на нетерпимое положение с развитием реактивной техники в стране. При этом все разработки в этом отношении сосредоточивались теперь во вновь организованном НИИ реактивной авиации, заместителем начальника которого был назначен Болховитинов. В этом институте были собраны ранее работавшие на различных предприятиях группы конструкторов реактивных двигателей во главе с М М. Бондарюком, В. П. Глушко, Л. С. Душкиным, А. М. Исаевым, A. M. Люлькой.

В мае 1944 г. ГКО принял еще одно постановление, наметившее широкую программу строительства реактивной авиационной техники. Этим документом предусматривалось создание модификаций Як-3, Ла-7 и Су-6 с ускорительным ЖРД, постройка «чисто ракетных» самолетов в ОКБ Яковлева и Поликарпова, экспериментального самолета Лавочкина с ТРД, а также истребителей с воздушно-реактивными моторокомпрессорными двигателями в ОКБ Микояна и Сухого. Для этого в конструкторском бюро Сухого был создан истребитель «Су-7», в котором совместно с поршневым мотором работал жидкостно-реактивный «РД-1», разработанный Глушко.

Полеты на «Су-7» начались в 1945 г. При включении «РД-1» скорость самолета увеличивалась в среднем на 115 км/ч, но испытания пришлось прекратить из-за частого выхода из строя реактивного двигателя. Похожая ситуация сложилась в конструкторских бюро Лавочкина и Яковлева. На одном из опытных самолетов «Ла-7 Р» ускоритель взорвался в полете, летчику-испытателю чудом удалось спастись. При испытании же «Як-3 РД» летчик-испытатель Виктор Расторгуев сумел достичь скорости в 782 км/ч, но при выполнении полета самолет взорвался, пилот погиб. Участившиеся катастрофы привели к тому, что испытания самолетов с «РД-1» были остановлены.

Свой вклад внес в эту работу и освобожденный из заключения Королев. В 1945 г. за участие в разработке и испытании ракетных установок для боевых самолетов «Пе-2» и «Ла-5 ВИ» он был награжден орденом «Знак Почета».

Одним из самых интересных проектов перехватчиков с ракетным двигателем стал проект сверхзвукового (!!!) истребителя «РМ-1» или «САМ-29», разработанного в конце 1944 г. незаслуженно забытым авиаконструктором А. С. Москалевым. Самолет выполнялся по схеме «летающее крыло» треугольной формы с овальными передними кромками, и при его разработке использовался предвоенный опыт создания самолетов «Сигма» и «Стрела». Проект «РМ-1» должен был иметь следующие характеристики: экипаж — 1 человек, силовая установка — «РД2 МЗВ» с тягой 1590 кгс, размах крыла — 8,1 м и его площадь — 28,0 м2, взлетный вес — 1600 кг, максимальная скорость — 2200 км/ч (и это в 1945 г.!). В ЦАГИ считали, что строительство и летные испытания «РМ- 1» — одно из наиболее перспективных направлений в будущем развитии советской авиации.


В ноябре 1945 г. приказ о постройке «РМ-1» был подписан министром А. И. Шахуриным, но… в январе 1946 г. было запущено печально знаменитое «авиационное дело», и Шахурин был осужден, а приказ о строительстве «РМ-1» отменен Яковлевым…

Послевоенное знакомство с немецкими трофеями вскрыло значительное отставание в развитии отечественного реактивного самолетостроения. Чтобы сократить разрыв, было принято решение использовать немецкие двигатели «JUMO-004» и «BMW-003», а затем на их основе создать собственные. Эти двигатели получили наименование «РД-10» и «РД-20».

В 1945 г. одновременно с заданием построить истребитель «МиГ-9» с двумя « РД-20» перед ОКБ Микояна была поставлена задача разработать экспериментальный истребитель-перехватчик с ЖРД «РД-2 М-3 В» и скоростью 1000 км/ч. Самолет, получивший обозначение И-270 («Ж»), вскоре был построен, но его дальнейшие испытания не показали преимущества ракетного истребителя перед самолетом с ТРД, и работы по этой теме закрыли. В дальнейшем жидкостные реактивные двигатели в авиации стали применятся только лишь на опытных и экспериментальных самолетах или в качестве авиационных ускорителей.

Они были первыми

«…Страшно вспомнить, как мало я тогда знал и понимал. Сегодня говорят: «открыватели», «первопроходцы». А мы в потемках шли и набивали здоровенные шишки. Ни специальной литературы, ни методики, ни налаженного эксперимента. Каменный век реактивной авиации. Были мы оба законченные лопухи!..» — так вспоминал о создании «БИ-1» Алексей Исаев. Да, действительно, из-за своего колоссального расхода топлива самолеты с жидкостно-ракетными двигателями не прижились в авиации, навсегда уступив место турбореактивным. Но сделав свои первые шаги в авиации, ЖРД прочно заняли свое место в ракетостроении.

В СССР в годы войны в этом отношении прорывом стало создание истребителя «БИ-1», и здесь особая заслуга Болховитинова, который взял под свое крыло и сумел привлечь к работе таких будущих светил советского ракетостроения и космонавтики, как: Василий Мишин, первый заместитель главного конструктора Королева, Николай Пилюгин, Борис Черток — главные конструкторы систем управления многих боевых ракет и носителей, Константин Бушуев — руководитель проекта «Союз» — «Аполлон», Александр Березняк — конструктор крылатых ракет, Алексей Исаев — разработчик ЖРД для ракет подводных лодок и космических аппаратов, Архип Люлька — автор и первый разработчик отечественных турбореактивных двигателей…


Получила разгадку и тайна гибели Бахчиванджи. В 1943 г. в ЦАГИ в эксплуатацию была пущена аэродинамическая труба больших скоростей Т-106. В ней сразу же начали проводить широкие исследования моделей самолетов и их элементов при больших дозвуковых скоростях. Была испытана и модель самолета «БИ» для выявления причин катастрофы. По результатам испытаний стало ясно, что «БИ» разбился из-за особенностей обтекания прямого крыла и оперения на околозвуковых скоростях и возникающего при этом явления затягивания самолета в пикирование, преодолеть которое летчик не мог. Катастрофа 27 марта 1943 г. «БИ-1» стала первой, которая позволила советским авиаконструкторам решить проблему «волнового кризиса» путем установки стреловидного крыла на истребителе «МиГ-15». Спустя 30 лет в 1973 г. Бахчиванджи был посмертно удостоен звания Героя Советского Союза. Юрий Гагарин так отозвался о нем:

«…Без полетов Григория Бахчиванджи возможно бы не было и 12 апреля 1961 г. ». Кто мог знать, что ровно через 25 лет, 27 марта 1968 года, как и Бахчиванджи в возрасте 34 лет, Гагарин тоже погибнет в авиакатастрофе. Их действительно объединило главное — они были первыми.

Евгений Музруков

Сверхзвуковые

Военные


A-5 «Виджилент» (North American A-5 Vigilante) — единственный в истории авиации сверхзвуковой палубный бомбардировщик.

Як-141 (прототип) и F-35 Lightning II — сверхзвуковые палубные истребители.

Гражданские


Ту-144ЛЛ в полёте

За всю историю авиации было создано только два сверхзвуковых пассажирских авиалайнера.

  • СССР — Ту-144, первый полёт 31 декабря 1968, начало перевозок пассажиров 1 ноября 1977, 1 июня 1978 снят с эксплуатации после очередной катастрофы. Построено 16 шт., в перевозках пассажиров участвовали 2, совершено 55 рейсов, перевезено 3194 пассажира. Во всех рейсах командирами экипажа были лётчики-испытатели ОКБ Туполева.
  • Великобритания, Франция — Aérospatiale-BAC Concorde, первый полёт 2 марта 1969, начало эксплуатации 21 января 1976, выведен из эксплуатации 26 ноября 2003. Построено 20 машин, активно эксплуатировалось 14, перевезено более 3 млн пассажиров, средний налёт — 17 417 часов. Один потерян в катастрофе 25 июля 2000 года, имел налёт 11 989 часов при наибольшем из всех самолётов — 23 397 (заводской № 210, регистрация G-BOAD, находится в Intrepid Sea-Air-Space Museum (англ. )).

Описание конструкции истребителя МиГ-9

МиГ-9 - это цельнометаллический одноместный истребитель, оснащенный двумя турбореактивными двигателями. Он выполнен по классической схеме со среднерасположенным крылом и трехопорным убирающимся шасси.

Самолет имеет фюзеляж типа полумонокок с гладкой работающей обшивкой. В его носовой части находится воздухозаборник, который разделяется на два туннеля, каждый из которых подает воздух к одному из двигателей. Каналы имеют эллиптическое сечение, они проходят по боковым частям фюзеляжа, обходя кабину пилота с двух сторон.

Крыло самолета трапециевидной формы с закрылками и элеронами.

Хвостовое оперение МиГ-9 цельнометаллическое с высокорасположенным стабилизатором.

Кабина пилота находится в передней части фюзеляжа, она закрыта фонарем обтекаемой формы, состоящим из двух частей. Передняя часть, козырек, закреплена неподвижно, а задняя часть сдвигается назад по трем направляющим. На поздних модификациях машины козырек выполнен из броневого стекла. Кроме того, для защиты пилота на машине установлена передняя и задняя броневые плиты, их толщина составляет 12 мм.

МиГ-9 имеет трехстоечное убирающееся шасси с передним колесом. Система выпуска шасси - пневматическая.

Истребитель оснащался силовой установкой, состоящей из двух ТРД РД-20, которые являлись ничем иным, как копией немецких трофейных двигателей БМВ-003. Каждый из них мог развивать тягу в 800 кгс. Двигатели первой серии (А-1) имели ресурс всего лишь 10 часов, ресурс серии А-2 был увеличен до 50 часов, а моторы РД-20Б могли работать по 75 часов. Силовая установка МиГ-9 запускалась с помощью пусковых моторов «Ридель».

Двигатели устанавливались в реданной части фюзеляжа, сопла имели регулировку, их можно было ставить в четыре положения: «старт», «взлет», «полет» или «скоростной полет». Управление конусом сопловых аппаратов было электродистанционным.

Чтобы уберечь корпус от раскаленных газов, на нижней стороне хвостовой части был установлен специальный термоэкран, который представлял собой гофрированный лист жароупорной стали.

Топливо размещалось в десяти баках, расположенных в крыльях и фюзеляже. Их общий объем составлял 1595 литров. Топливные баки соединялись между собой, чтобы обеспечивать равномерное использование топлива, это позволяло сохранять центровку самолета во время полета.

На МиГ-9 был установлена радиостанция РСИ-6, радиополукомпас РПКО-10М, а также кислородный аппарат КП-14. Электропитание самолет получал от трофейного генератора LR-2000, который позже был заменен отечественным ГСК-1300.

Вооружение истребителя состояло из одной 37-мм пушки Н-37 с боекомплектом в сорок снарядов и двумя 23-мм пушками НС-23 с боекомплектом в 40 снарядов. Первоначально самолет планировали оснастить более мощной, 57-мм, пушкой Н-57, но впоследствии от этой идеи отказались.

Одной из основных проблем истребителя было попадание пороховых газов в двигатели, так как пушка Н-37 была установлена на перегородке между двумя воздухозаборники. На поздних модификациях самолета на Н-37 стали устанавливать газоотводные трубки. Машины, выпущенные ранее, оборудовались ими уже в строевых частях.

На первых МиГ-9 стоял коллиматорный прицел, позже он был заменен автоматическим стрелковым прицелом.

Основные типы в настоящее время

СССР/Россия


  • Ту-154. Пассажирский, 1968/1972, построено 935 (потеряно 69), завершение производства планируется в 2010, находится в стадии вывода из эксплуатации по причине низкой топливной эффективности и высокого шума, по ресурсу возможна эксплуатация до 2015-16 гг, в Аэрофлоте выведен 21 декабря 2009, после 38 лет службы.
  • Ил-76. Грузовой, военно-транспортный, 1971/1974, построено 960 (потерян 61, из них 13 уничтожены в боевых действиях), производится в настоящее время, проектируются обновлённые варианты. До 60 тонн груза, до 245 солдат (разные модификации).
  • Су-25. Штурмовик, 1975/1981, 1320 шт., планируется эксплуатация до 2020 года и дальнейшее производство.
  • Су-27. Истребитель многоцелевой, 4-го поколения. 1977/1984, построено около 600 базового типа, модификация Су-30 270 шт. [ 2956 дней ]
  • Aero L-39 Albatros. Основной учебный самолёт стран Варшавского договора, Чехословакия, 1968/1972, производился до 1999, построено 2868 шт.

Страны Запада


  • Boeing 737. Среднемагистральный пассажирский самолёт. Принят в эксплуатацию в 1968 году, построено 6285 шт., производится в настоящее время.

Принцип работы реактивного двигателя

Рис. 1. Схема турбореактивного (реактивного) двигателя. 1 - вход воздуха; 2 - компрессор; 3 - камера сгорания; 4 - сопло; 5 - турбина.

В реактивном двигателе (рис. 1) струя воздуха попадает в двигатель, встречается с вращающимися с огромной скоростью турбинами компрессора, который засасывает воздух из внешней среды (с помощью встроенного вентилятора). Таким образом, решаются две задачи - первичный забор воздуха и охлаждение всего двигателя в целом. Лопатки турбин компрессора сжимают воздух примерно в 30 раз и более и «проталкивают» его (нагнетают) в камеру сгорания (генерируется рабочее тело), которая является основной частью любого реактивного двигателя. Камера сгорания выполняет ещё и роль карбюратора, смешивая топливо с воздухом. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или какое-нибудь твёрдое топливо пороховых ракет. После образования топливно-воздушной смеси она поджигается и выделяется энергия в виде теплоты, т. е. топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много теплоты, а также образуют при этом большое количество газов.

В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объёмное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя одна из самых горячих его частей (температура в ней достигает 2700°С), её необходимо постоянно интенсивно охлаждать. Реактивный двигатель снабжён соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы - продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например в ракетных или прямоточных двигателях. В турбореактивных двигателях газы после камеры сгорания сначала проходят через турбину, которой отдают часть своей тепловой энергии для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя - через него текут газы, перед тем как покинуть двигатель. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый компрессором для охлаждения внутренних деталей двигателя. Реактивное сопло может иметь различные формы и конструкцию в зависимости от типа двигателя. Если скорость истечения должна превосходить скорость звука, то соплу придаётся форма расширяющейся трубы или же сначала суживающейся, а затем расширяющейся (сопло Лаваля). Только в трубе такой формы можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».

В зависимости от того, используется или нет при работе реактивного двигателя окружающая среда, их подразделяют на два основных класса - воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД - , рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а бо́льшую часть рабочего тела черпает из окружающей среды. К ним относят турбореактивный двигатель (ТРД), прямоточный воздушно-реактивный двигатель (ПВРД), пульсирующий воздушно-реактивный двигатель (ПуВРД), гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД). В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Как работает реактивный двигатель

Рисунок 3 - Схема работы реактивного двигателя

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Краткая история развития реактивных самолетов

Началом истории реактивных самолетов мира принято считать 1910 год, когда конструктор и инженер Румынии по имени Анри Конада создал летательный аппарат в основе с поршневым двигателем. Отличием от стандартных моделей было использование лопастного компрессора, который и приводил машину в движение. Особо активно конструктор начал утверждать в послевоенное время, что его аппарат был оснащен именно реактивным двигателем, хотя первоначально он заявлял категорически противоположное.

Изучая конструкцию перового реактивного самолета А. Конада, можно сделать несколько выводов. Первый - конструктивные особенности машины показывают, что расположенный впереди двигатель и его выхлопные газы убили бы пилота. Вторым вариантом развития мог быть только пожар на самолете. Именно об этом и говорил конструктор, при первом запуске огнем была уничтожена хвостовая часть.

Что касается самолетов реактивного типа, которые были изготовлены в 1940-е года, они имели совершенно другую конструкцию, когда двигатель и место пилота были удалены, и, как следствие, это повысило безопасность. В местах, где пламя двигателей соприкасалось с фюзеляжем, была установлена специальная жаростойкая сталь, что не приносило корпусу увечий и разрушений.

В сознании большого количества людей, так или иначе связанных с авиацией общего назначения, такое понятие как «личный самолет» некоторое время было неразрывно связано с легкими одно- или двухмоторными винтовыми самолетами, которые оснащались турбовинтовыми или поршневыми двигателями. До самого последнего времени реактивные самолеты представлялись слишком дорогими и неэкономичными для клиентов, которые могли позволить себе такой вид транспорта. В этом нет ничего странного, так как даже дешевые самолеты с реактивными двигателями стоили по несколько миллионов долларов, а их мощные двигатели потребляли большое количество топлива, в сравнении с поршневыми аналогами. Поэтому попытки создания маленького реактивного самолета для частного использования долгие годы заканчивались ничем.

Однако сегодня есть все основания полагать, что в бизнес-авиации в ближайшее время произойдут существенные изменения: грядет эра одномоторных и двухмоторных реактивных самолетов. При этом речь идет не только о реактивных самолетах бизнес-класса, которые рассчитаны на перевозку 4-8 пассжирова, но о машинах, которые подобны спорткарам. То есть обычным 2-4 местным реактивным самолетам, которые уже ни в чем не уступают своим собратьям с поршневыми двигателями.

При этом естественно гражданские реактивные самолеты бизнес-класса, такие как ECLIPSE 500, CITATION MUSTANG, ADAM 700 и Embraer PHENOM 100 имеют больше перспектив на рынке, так как позволяют с комфортом переместить небольшую компанию куда угодно. По мнению экспертов в ближайшие 10 лет в мире будет реализовано порядка 4300-5400 «карманных» реактивных самолетов, а это уже вполне внушительная цифра. При этом появляется спрос не только на стандартные бизнес-джеты, но и на совершенно новые машины супер-легкие бизнес-джеты или даже своеобразные воздушные такси.

У таких самолетов даже появилось специально обозначение VLG – Very Light Jet. Реактивные самолеты начального уровня или личные реактивные самолеты, ранее такие самолеты часто называли микроджетами. Максимальная пассажировместимость таких машин не превышает 4-8 человек, а максимальная масса не превышает 4 540 кг. Такие самолеты легче, чем те модели, которые обычно называются бизнес-джетами и предназначены для управления 1 пилотом. Примерами таких машин являются уже упомянутые выше модели.

Ультралегкий реактивный самолет представляет собой совершенно новую концепцию, и все большее количество экспертов по всему миру приходят к выводу, что появление таких самолетов может произвести в сегменте бизнес-авиации настоящую революцию. Компании Honeywell и Rolls-Royce вовремя учли данный фактор при составлении своих достаточно серьезных годовых прогнозов по оценке рыночной ситуации. Ситуация на рынке меняется уже в настоящее время. Широкое использование при создании самолетов композитных материалов, миниатюризация реактивных двигателей, появление новых авиационных электронных систем все это, начиная с конца 1990-х годов двигает рынок подобных самолетов вперед.

В настоящее время владельцы самолетов, оснащенных поршневыми двигателями, часть из которых была спроектирована и построена еще в послевоенный период, начинает задумываться о покупке современных реактивных самолетов. Огромный интерес аудитории привел к появлению большого количества самых разнообразных проектов и разработок. К сожалению, большая их часть так навсегда и останется концептами и проектами, которые даже не дошли до стадии прототипа.

Embraer PHENOM 100


Первой компанией, которой удалось преодолеть весь процесс разработки и представить на свет готовый самолет, стала бразильская компания Eclipse Aviation. Именно эта авиастроительная компания вошла в гражданской авиации, первой получив сертификат на «карманный» реактивный самолет. Бразильское авиастроительное объединение вышло на рынок со своей моделью Embraer PHENOM 100, спрос на который превзошел все ожидания, что стало одним из предвестников грядущей коммерческой революции.

В настоящее время перспектива приобрести на рынке собственный реактивный самолет за условные 500 000 долларов оставляет равнодушными большое количество профессионалов от авиации, но те люди, которые любят и всю жизнь мечтали летать – а именно они и являются основными покупателями таких необычных средств передвижения – просто не могли поверить своему счастью. И хотя реальная стоимость бразильского первенца преодолела 1 миллион долларов (продажи стартовали с цен в 1,3 млн. долларов), он остается не просто конкурентоспособным, а просто уникальным предложением, обладающим невероятно низкой ценой. Приобрести такой самолет, с такими летными характеристиками в недавнем прошлом было просто нереально. При этом все авиапредприятия, которые трудятся в этом сегменте, стараются сделать все возможное, чтобы цены на их продукцию не превышали психологически важной отметки в 1 млн. долларов.

Увлечение Very Light Jet привело даже к довольно смелым проектам, таким как трансформация учебно-боевого самолета в гражданский ультралегкий реактивный самолет. Нетрудно представить, если бы самый современный российский учебно-тренировочный самолет Як-130 неожиданно стал доступен и для гражданских заказчиков. На него обязательно образовался бы спрос. Нашлись бы свои доморощенные «Абрамовичи» (да и не свои), которые захотели бы приобрести нечто отдаленно, но напоминающее боевую машину. Такая возможность чуть было не была реализована компанией Aviation Technology Group (ATG).


Учебно-тренировочный самолет, который разрабатывала компания ATG, получил название ATG Javelin и достаточно серьезно отличался от своих традиционных представителей. От перспективных моделей УТС он, прежде всего, отличался своей очень малой массой – не более 2 900 кг, что, к примеру, в 2,3 раза меньше, чем у российского учебно-тренировочного самолета Як-130 в аналогичном варианте комплектации. При этом американский ATG Javelin представлял собой двухдвигательным самолётом, обладающий полной электронной начинкой, которая позволяла ему (как утверждалось) достаточно эффективно готовить пилотов как гражданских авиалайнеров, так и новейших истребителей 5-го поколения.

В его бортовую электронику было «зашито» огромное количество различных сценариев возможных воздушных боев, а также имитация работы систем самообороны и бортового вооружения, возможности анализа действий летчика и планирования боевых вылетов. По словам представителей компании ATG реализация всего этого на практике позволяла с успехом использовать ATG Javelin не только для основной и первоначальной подготовки летчиков, но и повышения квалификации военных пилотов, которые после этого могли бы перейти на управление такими машинами, как Eurofighter, Су-30 или Rafale.

По своей конструкции УТС ATG Javelin был похож на истребитель с легким и прочным планером, который производился с широким использованием композиционных материалов. Члены экипажа находились в кабине тандемно под специальным двухсекционным фонарем кабины. Машина отличалась низким расположением свободнонесущего крыла со стреловидной передней кромкой. Стреловидное горизонтальное оперение, 2 киля, 2 подфюзеляжных гребня были наклонены наружу на 20°. Шасси самолета было трехстоечным, носовая опора оснащалась гидравлическим приводом. Двигатели были смонтированы за кабиной пилотов, воздух к ним подходил через боковые воздухозаборники. Плоские выхлопные сопла были расположены между килями.


Первоначально данный самолет разрабатывался и проектировался именно как учебно-тренировочный, но впоследствии он все чаще начинал позиционироваться как воздушное такси или даже легкое бизнес-джет решение. Для того чтобы без ограничений совершать полеты по гражданским воздушным трассам, ATG Javelin предполагалось оборудовать комплектом аппаратуры, подобной той, что используется на пассажирских самолетах, включая аппаратуру предупреждения столкновений в воздухе и с землей, системы для полетов с сокращенными интервалами вертикального эшелонирования, вычислительную систему самолетовождения. Читая подобные заявления со стороны разработчиков, оставалось только думать о том, как они собираются уместить все это оборудование в заявленную массу самолета, которая не превышала 3 тонн.

Также создатели машины надеялись пройти сертификацию по нормам FAR-23. Первый полет, единственный построенный экземпляр ATG Javelin выполнил 30 сентября 2005 года. Несмотря на тот факт, что компания получила 150 твердых заказов на свое детище, компания ATG так и не смогла найти того стратегического партнера, который бы позволил запустить новинку в серийное производство. В 2008 году фирма объявила себя банкротам, а разработка и испытания ATG Javelin были остановлены. Так любители легкой авиации лишились возможность получить в свои руки практически учебно-боевой самолет, обладающей завидной, практически сверхзвуковой скоростью. Максимальная скорость ATG Javelin составляла 975 км/ч.

Источники информации:
-http://luxury-info.ru/avia/airplanes/articles/karmannie-samoleti.html
-http://pkk-avia. livejournal.com/41955.html
-http://www.dogswar.ru/oryjeinaia-ekzotika/aviaciia/6194-ychebno-boevoi-samol.html

МиГ-9 – это советский реактивный истребитель, разработанный сразу после окончания войны. Он стал первым реактивным истребителем, сделанным в СССР. Истребитель МиГ-9 серийно выпускался с 1946 по 1948 год, за это время было произведено более шестисот боевых машин.

Исследователи истории авиации часто называют МиГ-9 и другие советские боевые машины (Як-15 и Як-17), созданные в этот период, «переходным типом истребителя». Эти самолеты были оснащены реактивной силовой установкой, но в то же время они имели планер, сходный с поршневыми машинами.

Истребители МиГ-9 стояли на вооружении отечественных ВВС недолго: в начале 50-х годов они были сняты с эксплуатации. В 1950-1951 годах почти четыреста истребителей были переданы военно-воздушным силам Китая. Китайцы использовали их в основном в качестве учебных самолетов: пилоты учились на них эксплуатировать реактивные самолеты.

МиГ-9 нельзя назвать слишком удачной машиной: с момента начала испытаний его преследовали катастрофы, конструкторам то и дело приходилось исправлять дефекты, появляющиеся во время эксплуатации. Однако не следует забывать, что МиГ-9 был первым реактивным истребителем, он создавался и передавался в войска в крайне сжатые сроки. На момент начала работ по созданию этой машины в СССР даже не существовало двигателя, который мог развивать необходимую для реактивного полета тягу.

На смену «проблемному» МиГ-9 вскоре пришел МиГ-15 , который и наши, и зарубежные эксперты называют одним из лучших истребителей этого периода. Добиться такого успеха конструкторы смогли только благодаря опыту, полученному во время создания МиГ-9.

Появление у Советского Союза большого количества реактивных истребителей вызвало удивление на Западе. Там многие не верили, что страна, разоренная войной, в кратчайшие сроки сможет наладить серийное производство новейшей по тем временам авиационной техники. Появление МиГ-9 и других советских реактивных самолетов имело серьезное политическое значение. Хотя, конечно, на Западе не имели представления о сложностях и проблемах, с которыми пришлось столкнуться советским авиационным конструкторам и пилотам, а также о том, чего стоило разрушенной стране создавать новые виды вооружения .

История создания первого реактивного самолета СССР

Уже в конце Второй мировой войны стало понятно, что будущее авиации за реактивными самолетами. В Советском Союзе начались работы в этом направлении, они пошли гораздо быстрее после ознакомления с трофейными немецкими разработками. В конце войны СССР смог заполучить не только неповрежденные немецкие самолеты и реактивные двигатели, но и захватить немецкие предприятия, где они выпускались.

Задание на создание реактивного истребителя одновременно получили четыре ведущих авиационных конструкторских бюро страны: Микояна, Лавочкина, Яковлева и Сухого. Основной проблемой являлось то, что на тот момент в СССР не было собственного реактивного авиационного двигателя, его еще предстояло создать.

А между тем время поджимало: вероятные противники - США, Англия и Германия - уже имели налаженное серийное производство реактивных самолетов и активно эксплуатировали эту технику.

На первых советских реактивных истребителях использовались трофейные немецкие двигатели BMW-003A и ЮМО-004.

В ОКБ Микояна работали над созданием двух истребителей, которые на стадии проекта имели обозначения И-260 и И-300. На обеих машинах планировали использовать двигатель BMW-003A. Работы над созданием самолета начались в феврале 1945 года.

И-260 копировал немецкий истребитель Me.262, два реактивных двигателя располагались под крыльями самолета. И-300 имел компоновку с силовой установкой внутри фюзеляжа.

Продувки в аэродинамической трубе показали, что компоновка с двигателями внутри фюзеляжа более выигрышная. Поэтому от дальнейших работ по прототипу И-260 решено было отказаться и доделывать И-300, который позже стал первым серийным советским реактивным истребителем под обозначением МиГ-9.

В постройку были заложены три опытные машины для проведения испытания: Ф-1, Ф-2 и Ф-3. Самолет Ф-1 был готов уже к декабрю 1945 года, однако доводка машины затянулась до марта следующего года, и только тогда начались испытания. 24 апреля 1946 года истребитель впервые поднялся в воздух, первый полет прошел нормально.

Уже начальный этап испытаний четко показал огромное превосходство реактивных самолетов над поршневыми: МиГ-9 смог разогнаться до скорости 920 км/ч, достичь потолка 13 км и набрать высоту 5 тыс. метров за 4,5 минуты. Следует сказать, что первоначально самолет планировали вооружить 57-мм автоматической пушкой Н-57, установив ее в перегородке между воздухозаборниками и двумя 37-мм пушками НС-23, расположенными в нижней части фюзеляжа. Однако позже от 57-мм пушки решили отказаться, сочтя ее мощь чрезмерной.

11 июля 1946 года произошла трагедия: во время полета фрагмент, оторвавшийся от крыла, повредил стабилизатор, в результате чего машина потеряла управление и врезалась в землю. Пилот погиб.

Второй опытный самолет Ф-2 был продемонстрирован публике во время авиапарада в Тушино. В августе на Куйбышевском заводе приступили к производству малой серийной партии, состоящей из десяти самолетов. Планировалось, что они примут участие в параде на Красной площади в октябре 1946 года.

В марте 1947 года началось серийное производство истребителя. Однако после выпуска 49 самолетов оно было приостановлено. Машину пришлось срочно переделывать. В течение двух месяцев на МиГ-9 была серьезно модернизирована топливная система, изменена конструкция хвостового обтекателя, увеличена площадь киля, также был выполнен ряд других доработок. После этого серийное производство было возобновлено.

В июне 1947 года были завершены государственные испытания четырех истребителей, двух опытных (Ф-2 и Ф-3) и двух серийных машин. В целом МиГ-9 получил положительные отзывы: по скоростным характеристикам, скороподъемности и высоте полета он существенно превосходил все поршневые самолеты, находящиеся на вооружении советской армии. Невиданной была и огневая мощь машины.

Были и проблемы: при стрельбе из пушек на высоте более 7 тыс. метров глох двигатель. С этим недостатком пытались бороться, но полностью устранить его так и не смогли.

Если сравнивать характеристики МиГ-9 с реактивным истребителем Як-15, который был разработан в это самое время, то микояновская машина проигрывала самолету ОКБ Яковлева в маневренности, но была быстрее в горизонтальном полете и при пикировании.

Новую машину в войсках встретили без особого энтузиазма. Летчики зачастую просто боялись летать на самолете, у которого нет винта. Кроме пилотов, нужно было переучить и технический персонал, причем сделать это нужно было в кратчайшие сроки. Спешка часто приводила к авариям, никак не связанным с техническими особенностями самолета.

Описание конструкции истребителя МиГ-9

МиГ-9 – это цельнометаллический одноместный истребитель, оснащенный двумя турбореактивными двигателями. Он выполнен по классической схеме со среднерасположенным крылом и трехопорным убирающимся шасси.

Самолет имеет фюзеляж типа полумонокок с гладкой работающей обшивкой. В его носовой части находится воздухозаборник, который разделяется на два туннеля, каждый из которых подает воздух к одному из двигателей. Каналы имеют эллиптическое сечение, они проходят по боковым частям фюзеляжа, обходя кабину пилота с двух сторон.

Крыло самолета трапециевидной формы с закрылками и элеронами.

Хвостовое оперение МиГ-9 цельнометаллическое с высокорасположенным стабилизатором.

Кабина пилота находится в передней части фюзеляжа, она закрыта фонарем обтекаемой формы, состоящим из двух частей. Передняя часть, козырек, закреплена неподвижно, а задняя часть сдвигается назад по трем направляющим. На поздних модификациях машины козырек выполнен из броневого стекла. Кроме того, для защиты пилота на машине установлена передняя и задняя броневые плиты, их толщина составляет 12 мм.

МиГ-9 имеет трехстоечное убирающееся шасси с передним колесом. Система выпуска шасси – пневматическая.

Истребитель оснащался силовой установкой, состоящей из двух ТРД РД-20, которые являлись ничем иным, как копией немецких трофейных двигателей БМВ-003. Каждый из них мог развивать тягу в 800 кгс. Двигатели первой серии (А-1) имели ресурс всего лишь 10 часов, ресурс серии А-2 был увеличен до 50 часов, а моторы РД-20Б могли работать по 75 часов. Силовая установка МиГ-9 запускалась с помощью пусковых моторов «Ридель».

Двигатели устанавливались в реданной части фюзеляжа, сопла имели регулировку, их можно было ставить в четыре положения: «старт», «взлет», «полет» или «скоростной полет». Управление конусом сопловых аппаратов было электродистанционным.

Чтобы уберечь корпус от раскаленных газов, на нижней стороне хвостовой части был установлен специальный термоэкран, который представлял собой гофрированный лист жароупорной стали.

Топливо размещалось в десяти баках, расположенных в крыльях и фюзеляже. Их общий объем составлял 1595 литров. Топливные баки соединялись между собой, чтобы обеспечивать равномерное использование топлива, это позволяло сохранять центровку самолета во время полета.

На МиГ-9 был установлена радиостанция РСИ-6, радиополукомпас РПКО-10М, а также кислородный аппарат КП-14. Электропитание самолет получал от трофейного генератора LR-2000, который позже был заменен отечественным ГСК-1300.

Вооружение истребителя состояло из одной 37-мм пушки Н-37 с боекомплектом в сорок снарядов и двумя 23-мм пушками НС-23 с боекомплектом в 40 снарядов. Первоначально самолет планировали оснастить более мощной, 57-мм, пушкой Н-57, но впоследствии от этой идеи отказались.

Одной из основных проблем истребителя было попадание пороховых газов в двигатели, так как пушка Н-37 была установлена на перегородке между двумя воздухозаборники. На поздних модификациях самолета на Н-37 стали устанавливать газоотводные трубки. Машины, выпущенные ранее, оборудовались ими уже в строевых частях.

На первых МиГ-9 стоял коллиматорный прицел, позже он был заменен автоматическим стрелковым прицелом.

Характеристики МиГ-9

Ниже представлены характеристики МиГ-9.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Размах крыла, м 10
Длина, м 9.75
Высота, м 3.225
Площадь крыла, кв. м 18.20
Макс. взлетная масса, кг 4998
Двигатель 2 РД РД-20
Тяга, кгс 2 х 800
Макс. скорость, км,/ч 910

Реактивный двигатель | инженерия | Британника

Газовая турбина работает по циклу Брайтона, в котором рабочая жидкость представляет собой непрерывный поток воздуха, поступающего во впускное отверстие двигателя. Воздух сначала сжимается турбокомпрессором до степени сжатия, обычно в 10-40 раз превышающего давление входящего воздушного потока (как показано на рисунке 1). Затем он поступает в камеру сгорания, куда вводится постоянный поток углеводородного топлива в форме капель распыляемой жидкости и пара или того и другого, и он сгорает при приблизительно постоянном давлении. Это приводит к возникновению непрерывного потока продуктов сгорания под высоким давлением, средняя температура которого обычно составляет от 980 до 1540 ° C или выше. Этот поток газов проходит через турбину, которая соединена крутящим моментом вала с компрессором и отбирает энергию из газового потока для приведения в действие компрессора. Поскольку к рабочему телу при высоком давлении добавлено тепло, поток газа, который выходит из газогенератора после расширения через турбину, содержит значительное количество избыточной энергии, т.е.е., лошадиные силы на газе - благодаря высокому давлению, высокой температуре и высокой скорости, которые могут быть использованы для двигательных целей.

Рис. 1: Поперечное сечение турбореактивного двигателя и (ниже) график типичных условий эксплуатации его рабочего тела.

Encyclopædia Britannica, Inc.

Тепло, выделяемое при сжигании типичного реактивного топлива в воздухе, составляет примерно 43 370 килоджоулей на килограмм (18 650 британских тепловых единиц на фунт) топлива. Если бы этот процесс был на 100 процентов эффективен, он бы производил энергию газа на каждую единицу расхода топлива, равную 7.45 лошадиных сил / (фунтов в час) или 12 киловатт / (кг в час). Фактически, некоторые практические термодинамические ограничения, которые являются функцией максимальной температуры газа, достигаемой в цикле, ограничивают эффективность процесса примерно до 40 процентов от этого идеального значения. Пиковое давление, достигаемое в цикле, также влияет на эффективность производства энергии. Это означает, что нижний предел удельного расхода топлива (SFC) для двигателя, производящего газовую мощность, составляет 0,336 (фунта в час) / лошадиная сила, или 0.207 (кг в час) / киловатт. На практике SFC даже выше этого нижнего предела из-за неэффективности, потерь и утечек в отдельных компонентах первичного двигателя.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Поскольку вес и объем имеют большое значение в общей конструкции самолета и поскольку силовая установка составляет значительную долю от общего веса и объема любого самолета, эти параметры должны быть минимизированы в конструкции двигателя. Воздушный поток, который проходит через двигатель, является представительной мерой площади поперечного сечения двигателя и, следовательно, его веса и объема. Следовательно, важным показателем качества первичного двигателя является его удельная мощность - количество энергии, которое он генерирует на единицу воздушного потока. Эта величина очень сильно зависит от максимальной температуры газа в активной зоне на выходе из камеры сгорания. Современные двигатели вырабатывают от 150 до 250 лошадиных сил / (фунт в секунду) или от 247 до 411 киловатт / (кг в секунду).

Движитель

Мощность газового двигателя, создаваемая первичным двигателем в виде горячего газа под высоким давлением, используется для приведения в действие движителя, позволяя ему создавать тягу для приведения в движение или подъема самолета. Принцип создания такой тяги основан на втором законе движения Ньютона. Этот закон обобщает наблюдение, что сила ( F ), необходимая для ускорения дискретной массы ( м, ), пропорциональна произведению этой массы на ускорение ( a ). Фактически

, где масса принимается как вес ( w ) объекта, деленный на ускорение свободного падения ( g, ) в месте, где объект был взвешен. В случае реактивного двигателя, как правило, имеют дело с ускорением постоянного потока воздуха, а не с дискретной массой. Здесь эквивалентное утверждение второго закона движения состоит в том, что сила ( F ), необходимая для увеличения скорости потока жидкости, пропорциональна произведению скорости массового потока ( M ) потока и изменение скорости потока,

, где скорость на впуске ( V 0 ) относительно двигателя принята как скорость полета, а скорость выброса ( V j ) - скорость выхлопа или струи относительно двигателя. W - это скорость массового расхода рабочего тела (т. Е. Воздуха или продуктов сгорания), деленная на ускорение свободного падения в месте измерения массового расхода. Относительно небольшое влияние массового расхода топлива на создание разницы между массовым расходом впускного и выпускного потоков намеренно не принимается во внимание.

Таким образом, можно сделать вывод, что компоненты движителя должны оказывать силу F на поток воздуха, протекающий через движитель, если это устройство ускоряет воздушный поток от скорости полета V 0 до скорости выброса V Дж .Реакция на эту силу F в конечном итоге передается от опор движителя к летательному аппарату как движущая сила.

Существует два общих подхода к преобразованию мощности на газе в тягу. В одном из них вторая турбина (то есть турбина низкого давления или мощная турбина) может быть введена в проточный тракт двигателя для извлечения дополнительной механической мощности из доступной газовой мощности. Затем эту механическую мощность можно использовать для привода внешнего движителя, такого как винт самолета или винт вертолета.В этом случае в движителе создается тяга, поскольку он возбуждает и ускоряет воздушный поток, проходящий через движитель, то есть воздушный поток, отдельный от потока, проходящего через движитель.

Во втором подходе высокоэнергетический поток, доставляемый первичным двигателем, может подаваться непосредственно в реактивное сопло, которое ускоряет газовый поток до очень высокой скорости на выходе из двигателя, что характерно для турбореактивного двигателя. В этом случае тяга развивается в компонентах первичного двигателя, поскольку они приводят в действие поток газа.

В других типах двигателей, таких как турбовентиляторный, тяга создается обоими подходами: большая часть тяги создается вентилятором, который приводится в действие турбиной низкого давления и который возбуждает и ускоряет байпасный поток ( см. ниже ). Оставшаяся часть общей тяги получается за счет основного потока, который выпускается через реактивное сопло.

Подобно тому, как первичный двигатель является несовершенным устройством для преобразования теплоты сгорания топлива в мощность газа, так и движитель является несовершенным устройством для преобразования мощности двигателя на газе в тяговое усилие. Обычно в высокотемпературном высокоскоростном реактивном потоке, выходящем из движителя, остается много энергии, которая не полностью используется для движения. Эффективность движителя, тяговая эффективность η p , представляет собой долю доступной энергии, которая эффективно используется для приведения в движение самолета, по сравнению с полной энергией реактивного потока. Для простого, но представительного случая, когда поток нагнетаемого воздуха равен потоку входящего газа, найдено, что

Хотя скорость струи V j должна быть больше, чем скорость самолета V 0 для создания полезной тяги, большая скорость струи, которая значительно превышает скорость полета, может быть очень пагубной для тяги. .Максимальный тяговый КПД достигается, когда скорость струи почти равна (но, при необходимости, немного выше) скорости полета. Этот фундаментальный факт привел к появлению большого количества реактивных двигателей, каждый из которых предназначен для создания определенного диапазона скоростей реактивной струи, который соответствует диапазону скоростей полета самолета, на котором он должен работать.

Чистая оценка эффективности реактивного двигателя - это измерение расхода топлива на единицу создаваемой тяги (например,g. в фунтах или килограммах в час израсходованного топлива на фунты или килограммы создаваемой тяги). Простого обобщения величины удельного расхода топлива тягового двигателя не существует. Это в значительной степени зависит не только от эффективности первичного двигателя (и, следовательно, от его степени давления и температуры пикового цикла), но также и от пропульсивной эффективности движителя (и, следовательно, от типа двигателя). Это также сильно зависит от скорости полета самолета и температуры окружающей среды (которая, в свою очередь, сильно зависит от высоты, времени года и широты).

Реактивный двигатель | инженерия | Британника

Газовая турбина работает по циклу Брайтона, в котором рабочая жидкость представляет собой непрерывный поток воздуха, поступающего во впускное отверстие двигателя. Воздух сначала сжимается турбокомпрессором до степени сжатия, обычно в 10-40 раз превышающего давление входящего воздушного потока (как показано на рисунке 1). Затем он поступает в камеру сгорания, куда вводится постоянный поток углеводородного топлива в форме капель распыляемой жидкости и пара или того и другого, и он сгорает при приблизительно постоянном давлении.Это приводит к возникновению непрерывного потока продуктов сгорания под высоким давлением, средняя температура которого обычно составляет от 980 до 1540 ° C или выше. Этот поток газов проходит через турбину, которая соединена крутящим моментом вала с компрессором и отбирает энергию из газового потока для приведения в действие компрессора. Поскольку к рабочему телу при высоком давлении добавлено тепло, поток газа, который выходит из газогенератора после расширения через турбину, содержит значительное количество избыточной энергии, т.е.е., лошадиные силы на газе - благодаря высокому давлению, высокой температуре и высокой скорости, которые могут быть использованы для двигательных целей.

Рис. 1: Поперечное сечение турбореактивного двигателя и (ниже) график типичных условий эксплуатации его рабочего тела.

Encyclopædia Britannica, Inc.

Тепло, выделяемое при сжигании типичного реактивного топлива в воздухе, составляет примерно 43 370 килоджоулей на килограмм (18 650 британских тепловых единиц на фунт) топлива. Если бы этот процесс был на 100 процентов эффективен, он бы производил энергию газа на каждую единицу расхода топлива, равную 7.45 лошадиных сил / (фунтов в час) или 12 киловатт / (кг в час). Фактически, некоторые практические термодинамические ограничения, которые являются функцией максимальной температуры газа, достигаемой в цикле, ограничивают эффективность процесса примерно до 40 процентов от этого идеального значения. Пиковое давление, достигаемое в цикле, также влияет на эффективность производства энергии. Это означает, что нижний предел удельного расхода топлива (SFC) для двигателя, производящего газовую мощность, составляет 0,336 (фунта в час) / лошадиная сила, или 0.207 (кг в час) / киловатт. На практике SFC даже выше этого нижнего предела из-за неэффективности, потерь и утечек в отдельных компонентах первичного двигателя.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Поскольку вес и объем имеют большое значение в общей конструкции самолета и поскольку силовая установка составляет значительную долю от общего веса и объема любого самолета, эти параметры должны быть минимизированы в конструкции двигателя.Воздушный поток, который проходит через двигатель, является представительной мерой площади поперечного сечения двигателя и, следовательно, его веса и объема. Следовательно, важным показателем качества первичного двигателя является его удельная мощность - количество энергии, которое он генерирует на единицу воздушного потока. Эта величина очень сильно зависит от максимальной температуры газа в активной зоне на выходе из камеры сгорания. Современные двигатели вырабатывают от 150 до 250 лошадиных сил / (фунт в секунду) или от 247 до 411 киловатт / (кг в секунду).

Движитель

Мощность газового двигателя, создаваемая первичным двигателем в виде горячего газа под высоким давлением, используется для приведения в действие движителя, позволяя ему создавать тягу для приведения в движение или подъема самолета. Принцип создания такой тяги основан на втором законе движения Ньютона. Этот закон обобщает наблюдение, что сила ( F ), необходимая для ускорения дискретной массы ( м, ), пропорциональна произведению этой массы на ускорение ( a ).Фактически

, где масса принимается как вес ( w ) объекта, деленный на ускорение свободного падения ( g, ) в месте, где объект был взвешен. В случае реактивного двигателя, как правило, имеют дело с ускорением постоянного потока воздуха, а не с дискретной массой. Здесь эквивалентное утверждение второго закона движения состоит в том, что сила ( F ), необходимая для увеличения скорости потока жидкости, пропорциональна произведению скорости массового потока ( M ) потока и изменение скорости потока,

, где скорость на впуске ( V 0 ) относительно двигателя принята как скорость полета, а скорость выброса ( V j ) - скорость выхлопа или струи относительно двигателя. W - это скорость массового расхода рабочего тела (т. Е. Воздуха или продуктов сгорания), деленная на ускорение свободного падения в месте измерения массового расхода. Относительно небольшое влияние массового расхода топлива на создание разницы между массовым расходом впускного и выпускного потоков намеренно не принимается во внимание.

Таким образом, можно сделать вывод, что компоненты движителя должны оказывать силу F на поток воздуха, протекающий через движитель, если это устройство ускоряет воздушный поток от скорости полета V 0 до скорости выброса V Дж .Реакция на эту силу F в конечном итоге передается от опор движителя к летательному аппарату как движущая сила.

Существует два общих подхода к преобразованию мощности на газе в тягу. В одном из них вторая турбина (то есть турбина низкого давления или мощная турбина) может быть введена в проточный тракт двигателя для извлечения дополнительной механической мощности из доступной газовой мощности. Затем эту механическую мощность можно использовать для привода внешнего движителя, такого как винт самолета или винт вертолета.В этом случае в движителе создается тяга, поскольку он возбуждает и ускоряет воздушный поток, проходящий через движитель, то есть воздушный поток, отдельный от потока, проходящего через движитель.

Во втором подходе высокоэнергетический поток, доставляемый первичным двигателем, может подаваться непосредственно в реактивное сопло, которое ускоряет газовый поток до очень высокой скорости на выходе из двигателя, что характерно для турбореактивного двигателя. В этом случае тяга развивается в компонентах первичного двигателя, поскольку они приводят в действие поток газа.

В других типах двигателей, таких как турбовентиляторный, тяга создается обоими подходами: большая часть тяги создается вентилятором, который приводится в действие турбиной низкого давления и который возбуждает и ускоряет байпасный поток ( см. ниже ). Оставшаяся часть общей тяги получается за счет основного потока, который выпускается через реактивное сопло.

Подобно тому, как первичный двигатель является несовершенным устройством для преобразования теплоты сгорания топлива в мощность газа, так и движитель является несовершенным устройством для преобразования мощности двигателя на газе в тяговое усилие.Обычно в высокотемпературном высокоскоростном реактивном потоке, выходящем из движителя, остается много энергии, которая не полностью используется для движения. Эффективность движителя, тяговая эффективность η p , представляет собой долю доступной энергии, которая эффективно используется для приведения в движение самолета, по сравнению с полной энергией реактивного потока. Для простого, но представительного случая, когда поток нагнетаемого воздуха равен потоку входящего газа, найдено, что

Хотя скорость струи V j должна быть больше, чем скорость самолета V 0 для создания полезной тяги, большая скорость струи, которая значительно превышает скорость полета, может быть очень пагубной для тяги. .Максимальный тяговый КПД достигается, когда скорость струи почти равна (но, при необходимости, немного выше) скорости полета. Этот фундаментальный факт привел к появлению большого количества реактивных двигателей, каждый из которых предназначен для создания определенного диапазона скоростей реактивной струи, который соответствует диапазону скоростей полета самолета, на котором он должен работать.

Чистая оценка эффективности реактивного двигателя - это измерение расхода топлива на единицу создаваемой тяги (например,g. в фунтах или килограммах в час израсходованного топлива на фунты или килограммы создаваемой тяги). Простого обобщения величины удельного расхода топлива тягового двигателя не существует. Это в значительной степени зависит не только от эффективности первичного двигателя (и, следовательно, от его степени давления и температуры пикового цикла), но также и от пропульсивной эффективности движителя (и, следовательно, от типа двигателя). Это также сильно зависит от скорости полета самолета и температуры окружающей среды (которая, в свою очередь, сильно зависит от высоты, времени года и широты).

Реактивный двигатель | инженерия | Британника

Газовая турбина работает по циклу Брайтона, в котором рабочая жидкость представляет собой непрерывный поток воздуха, поступающего во впускное отверстие двигателя. Воздух сначала сжимается турбокомпрессором до степени сжатия, обычно в 10-40 раз превышающего давление входящего воздушного потока (как показано на рисунке 1). Затем он поступает в камеру сгорания, куда вводится постоянный поток углеводородного топлива в форме капель распыляемой жидкости и пара или того и другого, и он сгорает при приблизительно постоянном давлении.Это приводит к возникновению непрерывного потока продуктов сгорания под высоким давлением, средняя температура которого обычно составляет от 980 до 1540 ° C или выше. Этот поток газов проходит через турбину, которая соединена крутящим моментом вала с компрессором и отбирает энергию из газового потока для приведения в действие компрессора. Поскольку к рабочему телу при высоком давлении добавлено тепло, поток газа, который выходит из газогенератора после расширения через турбину, содержит значительное количество избыточной энергии, т. е.е., лошадиные силы на газе - благодаря высокому давлению, высокой температуре и высокой скорости, которые могут быть использованы для двигательных целей.

Рис. 1: Поперечное сечение турбореактивного двигателя и (ниже) график типичных условий эксплуатации его рабочего тела.

Encyclopædia Britannica, Inc.

Тепло, выделяемое при сжигании типичного реактивного топлива в воздухе, составляет примерно 43 370 килоджоулей на килограмм (18 650 британских тепловых единиц на фунт) топлива. Если бы этот процесс был на 100 процентов эффективен, он бы производил энергию газа на каждую единицу расхода топлива, равную 7.45 лошадиных сил / (фунтов в час) или 12 киловатт / (кг в час). Фактически, некоторые практические термодинамические ограничения, которые являются функцией максимальной температуры газа, достигаемой в цикле, ограничивают эффективность процесса примерно до 40 процентов от этого идеального значения. Пиковое давление, достигаемое в цикле, также влияет на эффективность производства энергии. Это означает, что нижний предел удельного расхода топлива (SFC) для двигателя, производящего газовую мощность, составляет 0,336 (фунта в час) / лошадиная сила, или 0.207 (кг в час) / киловатт. На практике SFC даже выше этого нижнего предела из-за неэффективности, потерь и утечек в отдельных компонентах первичного двигателя.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Поскольку вес и объем имеют большое значение в общей конструкции самолета и поскольку силовая установка составляет значительную долю от общего веса и объема любого самолета, эти параметры должны быть минимизированы в конструкции двигателя.Воздушный поток, который проходит через двигатель, является представительной мерой площади поперечного сечения двигателя и, следовательно, его веса и объема. Следовательно, важным показателем качества первичного двигателя является его удельная мощность - количество энергии, которое он генерирует на единицу воздушного потока. Эта величина очень сильно зависит от максимальной температуры газа в активной зоне на выходе из камеры сгорания. Современные двигатели вырабатывают от 150 до 250 лошадиных сил / (фунт в секунду) или от 247 до 411 киловатт / (кг в секунду).

Движитель

Мощность газового двигателя, создаваемая первичным двигателем в виде горячего газа под высоким давлением, используется для приведения в действие движителя, позволяя ему создавать тягу для приведения в движение или подъема самолета. Принцип создания такой тяги основан на втором законе движения Ньютона. Этот закон обобщает наблюдение, что сила ( F ), необходимая для ускорения дискретной массы ( м, ), пропорциональна произведению этой массы на ускорение ( a ).Фактически

, где масса принимается как вес ( w ) объекта, деленный на ускорение свободного падения ( g, ) в месте, где объект был взвешен. В случае реактивного двигателя, как правило, имеют дело с ускорением постоянного потока воздуха, а не с дискретной массой. Здесь эквивалентное утверждение второго закона движения состоит в том, что сила ( F ), необходимая для увеличения скорости потока жидкости, пропорциональна произведению скорости массового потока ( M ) потока и изменение скорости потока,

, где скорость на впуске ( V 0 ) относительно двигателя принята как скорость полета, а скорость выброса ( V j ) - скорость выхлопа или струи относительно двигателя. W - это скорость массового расхода рабочего тела (т. Е. Воздуха или продуктов сгорания), деленная на ускорение свободного падения в месте измерения массового расхода. Относительно небольшое влияние массового расхода топлива на создание разницы между массовым расходом впускного и выпускного потоков намеренно не принимается во внимание.

Таким образом, можно сделать вывод, что компоненты движителя должны оказывать силу F на поток воздуха, протекающий через движитель, если это устройство ускоряет воздушный поток от скорости полета V 0 до скорости выброса V Дж . Реакция на эту силу F в конечном итоге передается от опор движителя к летательному аппарату как движущая сила.

Существует два общих подхода к преобразованию мощности на газе в тягу. В одном из них вторая турбина (то есть турбина низкого давления или мощная турбина) может быть введена в проточный тракт двигателя для извлечения дополнительной механической мощности из доступной газовой мощности. Затем эту механическую мощность можно использовать для привода внешнего движителя, такого как винт самолета или винт вертолета.В этом случае в движителе создается тяга, поскольку он возбуждает и ускоряет воздушный поток, проходящий через движитель, то есть воздушный поток, отдельный от потока, проходящего через движитель.

Во втором подходе высокоэнергетический поток, доставляемый первичным двигателем, может подаваться непосредственно в реактивное сопло, которое ускоряет газовый поток до очень высокой скорости на выходе из двигателя, что характерно для турбореактивного двигателя. В этом случае тяга развивается в компонентах первичного двигателя, поскольку они приводят в действие поток газа.

В других типах двигателей, таких как турбовентиляторный, тяга создается обоими подходами: большая часть тяги создается вентилятором, который приводится в действие турбиной низкого давления и который возбуждает и ускоряет байпасный поток ( см. ниже ). Оставшаяся часть общей тяги получается за счет основного потока, который выпускается через реактивное сопло.

Подобно тому, как первичный двигатель является несовершенным устройством для преобразования теплоты сгорания топлива в мощность газа, так и движитель является несовершенным устройством для преобразования мощности двигателя на газе в тяговое усилие.Обычно в высокотемпературном высокоскоростном реактивном потоке, выходящем из движителя, остается много энергии, которая не полностью используется для движения. Эффективность движителя, тяговая эффективность η p , представляет собой долю доступной энергии, которая эффективно используется для приведения в движение самолета, по сравнению с полной энергией реактивного потока. Для простого, но представительного случая, когда поток нагнетаемого воздуха равен потоку входящего газа, найдено, что

Хотя скорость струи V j должна быть больше, чем скорость самолета V 0 для создания полезной тяги, большая скорость струи, которая значительно превышает скорость полета, может быть очень пагубной для тяги. .Максимальный тяговый КПД достигается, когда скорость струи почти равна (но, при необходимости, немного выше) скорости полета. Этот фундаментальный факт привел к появлению большого количества реактивных двигателей, каждый из которых предназначен для создания определенного диапазона скоростей реактивной струи, который соответствует диапазону скоростей полета самолета, на котором он должен работать.

Чистая оценка эффективности реактивного двигателя - это измерение расхода топлива на единицу создаваемой тяги (например,g. в фунтах или килограммах в час израсходованного топлива на фунты или килограммы создаваемой тяги). Простого обобщения величины удельного расхода топлива тягового двигателя не существует. Это в значительной степени зависит не только от эффективности первичного двигателя (и, следовательно, от его степени давления и температуры пикового цикла), но также и от пропульсивной эффективности движителя (и, следовательно, от типа двигателя). Это также сильно зависит от скорости полета самолета и температуры окружающей среды (которая, в свою очередь, сильно зависит от высоты, времени года и широты).

Реактивные двигатели


Разработка реактивных двигателей во время войны

До Второй мировой войны, в 1939 году, реактивные двигатели в основном существовали в лабораториях. Конец войны, однако, показал, что реактивные двигатели с их большой мощностью и компактностью были в авангарде развития авиации.

Молодой немецкий физик Ханс фон Охайн работал в компании Ernst Heinkel, специализирующейся на современных двигателях, над созданием первого в мире реактивного самолета, экспериментального Heinkel He 178. Первый полет он совершил 27 августа 1939 года.

Опираясь на это достижение, немецкий конструктор двигателей Ансельм Франц разработал двигатель, пригодный для использования в реактивных истребителях. Самолет Me 262 был построен компанией «Мессершмитт». Хотя Me 262 был единственным реактивным истребителем, который участвовал в боевых действиях во время Второй мировой войны, он провел значительное количество времени на земле из-за высокого расхода топлива. Его часто описывали как «сидячую утку для атак союзников». Тем временем в Англии Фрэнк Уиттл полностью самостоятельно изобрел реактивный двигатель.Таким образом, британцы разработали успешный двигатель для другого первого реактивного истребителя - Gloster Meteor. Британия использовала его для обороны страны, но из-за недостаточной скорости не использовалась для боевых действий над Германией.

Британцы поделились технологиями Уиттла с США, что позволило General Electric (GE) построить реактивные двигатели для первого американского истребителя Bell XP-59. Британцы продолжали разрабатывать новые реактивные двигатели по проектам Уиттла, а Rolls-Royce приступила к работе над двигателем Нене в 1944 году.Компания продала Ненес Советскому Союзу - советская версия двигателя, фактически, использовалась в реактивном истребителе МиГ-15, который позже сражался с американскими истребителями и бомбардировщиками во время Корейской войны.

Капитуляция Германии в 1945 году выявила важные открытия и изобретения военного времени. General Electric и Pratt & Whitney, еще один американский производитель двигателей, добавили уроки немецкого языка к урокам Уиттла и других британских конструкторов. Первые реактивные двигатели, такие как Me 262, быстро потребляли топливо. Таким образом, была поставлена ​​первоначальная задача: создать двигатель, который мог бы обеспечить высокую тягу при меньшем расходе топлива.

Компания Pratt & Whitney разрешила эту дилемму в 1948 году, объединив два двигателя в один. Двигатель включал два компрессора; каждый вращался независимо, внутренний давал высокую степень сжатия для хорошей производительности. Каждый компрессор потреблял энергию от собственной турбины; следовательно, были две турбины, одна за другой. Такой подход привел к созданию двигателя J-57. На нем летали коммерческие авиалайнеры - Boeing 707, Douglas DC-8. Один из самых известных послевоенных двигателей, он поступил на вооружение США.ВВС в 1953 г.

Человек за двигателем


Ганс фон Охайн Ганс фон Охайн из Германии был проектировщиком первого действующего реактивного двигателя, хотя заслуга в изобретении реактивного двигателя принадлежит британцу Фрэнку Уиттлу. Уиттл, зарегистрировавший патент на турбореактивный двигатель в 1930 году, получил это признание, но не проводил летных испытаний до 1941 года. Охайн родился 14 декабря 1911 года в Дессау, Германия. Работая над докторской диссертацией в Геттингенском университете, он сформулировал свою теорию реактивного движения в 1933 году.После получения ученой степени в 1935 году он стал младшим ассистентом Роберта Вичарда Поля, директора Физического института университета.

Получив патент на свой турбореактивный двигатель в 1936 году, Охайн присоединился к компании Heinkel в Ростоке, Германия. К 1937 году он построил испытанный на заводе демонстрационный двигатель, а к 1939 году - полностью рабочий реактивный самолет He 178. Вскоре после этого Охайн руководил постройкой He S.3B, первого полностью работающего турбореактивного двигателя с центробежным потоком. Этот двигатель был установлен на самолете He 178, совершившем первый в мире полет с реактивным двигателем 27 августа 1939 года.Охайн разработал усовершенствованный двигатель He S.8A, который впервые поднялся в воздух 2 апреля 1941 года. Однако эта конструкция двигателя была менее эффективной, чем двигатель, разработанный Ансельмом Францем, на котором устанавливался Me 262, первый действующий реактивный истребитель. .

Охайн приехал в Соединенные Штаты в 1947 году и стал научным сотрудником на базе ВВС Райт-Паттерсон, в Лабораториях аэрокосмических исследований, Лаборатории авиадвигателей Райта и в исследовательском институте Дейтонского университета.

За 32 года работы У.Государственная служба США, Охайн опубликовала более 30 технических статей и зарегистрировала 19 патентов США. В 1991 году Охайн был удостоен награды Чарльза Старка Дрейпера от Национальной инженерной академии США как пионер реактивной эры. Охайн умер 13 марта 1998 года в своем доме в Мельбурне, штат Флорида.


Heinkel He 178 был первым в мире реактивным самолетом.

Как работают реактивные двигатели?

  • Мэтью Джонстон
  • 25 ноября 2020 г.
  • Авиация

Пилоты должны хорошо разбираться в каждом аспекте самолета, чтобы обеспечить безопасный и эффективный полет.В этом руководстве исследуется вопрос: как работают реактивные двигатели?

Для тех, кто родился в эпоху реактивных двигателей, эту технологию легко принять как должное. Даже на реактивном самолете дальние поездки, например, из Флориды на Гавайи, могут занять несколько часов, но представьте себе полет без мощных скоростей, которые могут обеспечить реактивные двигатели. Пилотам, которые летают на реактивных самолетах, требуется типовой рейтинг и другие сертификаты, выходящие за рамки частного сертификата, а те, кто уполномочен действовать в качестве командира воздушного судна (PIC), посвящают свое время изучению принципа работы реактивных двигателей.Хорошее понимание этого позволяет пилотам управлять безопасным, более эффективным и более глубоким пониманием того, как двигатель работает с аэродинамическими силами для приземления, крейсерского полета и повторного взлета.

Разработка реактивного двигателя

Чтобы в полной мере оценить важность реактивного двигателя и его место в авиации, лучше всего знать, как они появились и что они по большей части заменили. Ранние мечтатели об авиации делали наброски прототипов реактивных двигателей еще до того, как стали возможны воздушные шары и планеры.До появления реактивных двигателей самолеты были (и многие до сих пор) приводились в действие поршневыми двигателями, винтовыми двигателями. В то время как разработка турбовинтовых двигателей помогла увеличить скорость, тягу и мощность самолетов, авиационные инженеры все еще изо всех сил пытались использовать реактивную мощность.

Как и большинство авиационных инноваций, инновации в области реактивных двигателей были продиктованы войной. Горстка пионеров авиации, в том числе Сэмюэл Лэнгли, была профинансирована военным министерством США для создания пилотируемого полета человека, чтобы его можно было использовать в качестве оружия.Хотя первый полет братьев Райт состоялся всего за несколько лет до начала Первой мировой войны, авиационные технологии во время войны быстро продвинулись до такой степени, что воздушные бои между самолетами происходили в самолетах с открытой кабиной.

Вторая мировая война подтолкнула ученых и инженеров-гонщиков к разработке не только ракетных и ракетных технологий, но и реактивных двигателей. Еще в 1939 году реактивные двигатели существовали, но в основном в лабораториях. Немецкий физик Ханс ван Охайн разработал работоспособный реактивный двигатель, который можно было бы использовать в истребителе. Самолет был построен компанией «Мессершмитт» и назывался Me 262. Как и все реактивные самолеты, самолет потреблял огромное количество топлива, и инженеры столкнулись с трудностями при разработке этой ранней версии, поскольку было трудно удержать его в воздухе, когда расходные материалы были очень востребованы. Он не много летал, но это был сильный первый шаг. В то же время британский новатор Фрэнк Уиттл разработал собственный реактивный двигатель, который использовался в Gloster Meteor. Время от времени его использовали в качестве защитной меры, но его относительная нехватка скорости делала его непрактичным для зарубежных боев.

После войны применение реактивных двигателей перешло к пассажирским авиакомпаниям. Как только это стало возможным, путешествия на самолетах стали намного дешевле и доступнее. Считается, что эра реактивных самолетов началась в 1958 году, когда ныне несуществующая авиакомпания Pan American Airlines начала выполнять рейсы за границу на самолетах Boeing 707.

Принципы и механика реактивных двигателей

Колоссальная скорость реактивного двигателя работает на Третьем Законе физики («Каждое действие - это равная и противоположная реакция. ») Третий закон приводится в движение тягой, создаваемой газовыми турбинами внутри. В передней части реактивного двигателя вентилятор всасывает воздух. (Если вы посмотрите прямо на реактивный двигатель пассажирского реактивного самолета, вы увидите лопасти этого вентилятора.) Затем воздух задерживается внутри двигателя, где компрессор создает его под давлением. Компрессор содержит несколько вентиляторов, каждый из которых оснащен лопатками и прикреплен к валу.

После того, как эти вентиляторы выполнили свою работу по сжатию воздуха, подается топливо.Затем зажигается искра, в результате чего смесь топлива и воздуха загорается. Эта комбинация затем быстро расширяется и направляется через сопло, расположенное в задней части двигателя. Эта концентрированная энергия и есть тяга, которая приводит в движение самолет. Реакция происходит с невероятной скоростью, и турбины в большинстве современных реактивных двигателей вращаются более 10 000 раз в минуту. В разговорной речи многие летные инструкторы описывают этот процесс своим ученикам как «сосать, сжимать, трясти, дуть».

Реактивное топливо

Что находится в топливной смеси, которая вызывает эту мощную реакцию? Реактивное топливо технически известно как топливо для авиационных турбин или ATF.В то время как в первых экспериментах с реактивными двигателями использовалась энергия пара, а первые поршневые двигатели работали на бензине. Современные реактивные двигатели работают на керосиновом топливе, и это происходит с конца Второй мировой войны, и в мире авиации это обычно сокращается как «автур».

ATF обычно прозрачная или светло-желтая. Он состоит из смеси углеводородов и по соображениям безопасности обрабатывается в соответствии с международными спецификациями и стандартами. В коммерческой авиации в большинстве реактивных двигателей используется топливо, известное как Jet A и Jet A-1.Разница между Jet A и Jet A-1 заключается в том, что Jet A замерзает при 40 градусах ниже нуля, а Jet A-1 - при -53 градусах. В большинстве самолетов авиации общего назначения, в которых используются газотурбинные двигатели, используется состав под названием Jet B, тип производительности, специально разработанный для холодной погоды.

В чем разница между реактивными двигателями и турбовинтовыми двигателями?

В реактивных двигателях пропеллеры не используются; «пропеллеры», так сказать, находятся внутри двигателя самолета и выполняют функцию вентилятора.Однако они неэффективны, а авиакеросин стоит дорого. Турбовинтовые самолеты - это сочетание современной инженерии и инновационного использования легких материалов.

Если турбовинтовой самолет считается переходным от поршневых самолетов к реактивным, почему самолеты, содержащие их, продолжают летать? Турбовинтовые самолеты становятся все реже, но их все еще можно встретить на региональных авиалиниях и самолетах авиации общего назначения. Многие пилоты предпочитают их, потому что они, как правило, менее автоматизированы и гораздо более эффективны в более коротких поездках.Например, имеет смысл запустить реактивный двигатель, чтобы лететь из штата Мэн в Неваду, но более короткий перелет из Колорадо в Нью-Мексико более эффективен при меньшем количестве топлива. В таких условиях турбовинтовые самолеты чаще всего выбирают.


Г-н Мэтью А. Джонстон обладает более чем 23-летним опытом работы на различных должностях в сфере образования и в настоящее время является президентом Калифорнийского авиационного университета. Он поддерживает членство и поддерживает участие в нескольких ассоциациях по продвижению и защите авиации, включая Университетскую авиационную ассоциацию (UAA), Региональную ассоциацию авиакомпаний (RAA), AOPA, NBAA и EAA с программой Young Eagles.Он гордится своим сотрудничеством с авиакомпаниями, авиационными предприятиями и отдельными авиационными профессионалами, которые работают с ним над развитием Калифорнийского авиационного университета как лидера в обучении авиационных специалистов.

.

Реактивный двигатель: футуристическая технология, застрявшая в прошлом

И, конечно же, даже несмотря на то, что производители двухконтурных двигателей и самолетов в равной степени обращаются к более чистым технологиям, их цель не в сокращении количества путешествий по воздуху. Что касается модели А330, Airbus имеет 1694 заказа на эти самолеты, из которых только 1373 выполнены.Неявное сообщение: спрос не был удовлетворен, а это значит, что нужно строить больше самолетов и быстрее. И это представлено как постоянное состояние. Производитель авиакомпаний никогда не будет стремиться удовлетворить потребности всех авиакомпаний раз и навсегда, а будет продолжать производить новые самолеты до бесконечности. Таким образом, даже если будущие самолеты будут оснащены относительно более чистыми турбовентиляторными двигателями Trent 7000, предполагается - цель - поднять в небо еще больше A330. Это несколько усложняет прямую цель - поражение «экологических целей», как выражается Rolls-Royce.Индивидуально, конечно, но все вместе, если в небе больше самолетов?

Авиационные футуристы могут возразить, что по мере вывода из эксплуатации старых самолетов новые, более эффективные самолеты просто заменят их, и что объединение сократит общее количество полетов и устранит ненужные маршруты. Однако очевидно, что Airbus и Boeing вряд ли откажутся от нового бизнеса или замедления производства. Подумайте, как Airbus смело заявляет, что их семейство A320 является «самым продаваемым самолетом всех времен в мире»; а затем посмотрите, как Boeing демонстрирует изобилие клиентов для своего сопоставимого 737-го поколения.Очевидно, это гонка за , за рост, за , а не только за эффективность.

Турбореактивные двухконтурные двигатели - звуковое напоминание о парадоксе прогресса. Как бы сильно люди ни хотели испытывать новые вещи, они должны использовать для этого старые инструменты и средства. Иногда эти инструменты и средства могут действовать как шоры. Люди привязаны к существующим шаблонам, инфраструктуре и системам, даже если они хотят или должны делать что-то новое и действительно инновационное.

Покидая Вашингтон несколько дней спустя, я был поражен красотой международного аэропорта имени Ээро Сааринена имени Даллеса на рассвете.Как он поднимается с земли, как архитектурно возвещает грандиозный проект полета. Это похоже на гимн реактивному веку, своего рода живой памятник.

Однако, пока я продирался через контрольно-пропускной пункт к своим воротам, мне пришло в голову, как застряли путешественники в этом странном моменте прошлого, в этой затее середины 20-го века, которая называется путешествием на реактивном самолете. Инновации в конструкции и технологии турбовентиляторных двигателей могут быть благими намерениями и дальновидными, по крайней мере, в некотором смысле.А реальная работа, которую турбовентиляторные двигатели выполняют изо дня в день, час за часом безостановочно мчась по небу, - это не что иное, как невероятное с технической точки зрения. Но в то же время шум полета действительно не может не напоминать людям о том, что несколько десятилетий назад пережило свой расцвет.

Горькая правда заключается в том, что путешествия по воздуху, вероятно, не станут намного лучше в ближайшие годы. Возможно, он достиг определенных пределов с точки зрения скорости, экономичности и комфорта. Есть множество признаков того, что это так: изменение климата, ограниченные ресурсы, ограничения землепользования, неравенство благосостояния и так далее.Недавно появились новости о проблемах с двигателями Rolls-Royce Trent 1000, которыми оснащен Boeing 787, который был впервые представлен в 2011 году: лопасти турбины на двух отдельных самолетах сломались во время полета, что привело к сильным вибрациям, и самолет прекратил работу. путешествия. В отношении этих недавних инцидентов Уоррен Ист, исполнительный директор Rolls-Royce, признал очевидную, но неприятную правду о деталях ТРДД: «Они изнашиваются».

GE превратила самый мощный в мире реактивный двигатель в электростанцию ​​мощностью 65 мегаватт

GE использует самый большой в мире реактивный двигатель и превращает его в силовую установку.Бьющееся сердце машины исходит от GE90-115B, самого большого и мощного реактивного двигателя, способного производить 127 900 фунтов тяги, согласно Книге рекордов Гиннеса. Электрогенератор, который GE называет LM9000, сможет вырабатывать колоссальные 65 мегаватт - этого достаточно для снабжения 6 500 домов - и выйти на полную мощность за 10 минут. «Мы выбрали лучшие технологии в GE и построили самый большой и самый мощный авиационный двигатель из когда-либо созданных», - говорит Маурицио Чофини из GE Oil & Gas, технический директор проекта.
Идея использования реактивных двигателей для производства электроэнергии существует уже давно. Слово «авиационный» является намеком на наследие машины, а это означает, что конструкторы позаимствовали технологию, первоначально разработанную их коллегами из аэрокосмической отрасли из GE Aviation.

Эта технология также является хорошим примером того, что GE называет магазином GE - системой обмена технологиями, исследованиями и опытом между своими многочисленными предприятиями. Сегодня города и заводы работают на авиационных двигателях, а также на нефтяных платформах и кораблях.

ge.com/news/sites/default/files/Reports/uploads/2017/01/27153110/LM9000-2k-new-01.jpg" rel="attachment wp-att-25726"> Изображение вверху: GE90 - самый мощный реактивный двигатель в мире. Этот двигатель, прикрепленный к лучшему летному испытанию Boeing 747 компании GE Aviation, заставляет скалы за взлетно-посадочной полосой летать, когда самолет набирает обороты, чтобы взлететь из Центра управления полетами GE в Викторвилле, Калифорния, расположенного в пустыне Мохаве. Изображение в формате GIF: GE Aviation. Выше и ниже: LM9000 использует основную технологию двигателя, но также включает детали, напечатанные на 3D-принтере. Он может генерировать 65 мегаватт. Изображения предоставлены: GE Oil & Gas

В конце 1950-х годов инженеры построили первое поколение авиационных двигателей GE под названием LM100 из вертолетного двигателя.Следующая машина, LM1500, имела внутренние компоненты от первого сверхзвукового двигателя GE - J79 - и вырабатывала более 10 000 киловатт. GE Power продолжала совершенствовать конструкцию, создавая авиационные производные от двигателя CF6, который используется в Air Force One и многих других Boeing 747, а также двигателя F404, используемого на военных самолетах F / A-18 Hornet и F-117 Nighthawk. Авиационные системы, основанные на этих двигателях, вырабатывают электроэнергию в отдаленных уголках мира, а также приводят в действие самый быстрый в мире пассажирский паром.

Но LM9000 выводит технологию на новый уровень. Подразделение GE Oil & Gas разработало машину для питания крупных заводов по производству сжиженного природного газа (СПГ). «Завод СПГ похож на гигантский холодильник, но вместо того, чтобы делать лед и сохранять продукты в прохладном состоянии, он превращает природный газ в жидкость, понижая температуру до минус 160 градусов по Цельсию», - говорит Тайо Монтгомери, инженер по работе с клиентами в GE Oil & Газ. Он говорит, что LM9000 настолько мощный, что позволяет операторам заводов СПГ возобновлять производство без предварительного слива хладагента со всего завода.«У него достаточно мощности и пускового момента, чем вы можете просто встать и ехать».

Двигатели GE90 налетали 41 миллион часов с момента их первого ввода в эксплуатацию в середине 1990-х годов и имеют надежность вылета 99,98 процента, согласно данным GE. Они также очень легкие и относительно простые в уходе. «На капитальное обслуживание газовых турбин, обычно устанавливаемых на старых заводах по производству СПГ, может уйти до 24 дней», - говорит Монтгомери. «Но мы можем заменить всю турбину LM9000 за 24 часа.”

Команда внесла и другие изменения, чтобы оптимизировать LM9000 для промышленных приложений. Они переключили систему сгорания машины с реактивного топлива на природный газ. Машина также будет иметь камеру сгорания, напечатанную на 3D-принтере, инновационный дизайн которой позволит машине соответствовать требованиям по снижению выбросов во всем мире.

Под капотом инженеры тщетно будут искать коробку передач. Это связано с тем, что в конструкции используется архитектура турбины «свободной мощности», которая позволяет машине эффективно работать в широком диапазоне значений мощности и скорости.

В результате «LM9000 обеспечит высочайшую доступность при минимальной стоимости владения для приложений СПГ», - говорит Притам Баласубраманьям, менеджер по продукции новой машины в GE Oil & Gas.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены. Карта сайта