+7 (495) 720-06-54
Пн-пт: с 9:00 до 21:00, сб-вс: 10:00-18:00
Мы принимаем он-лайн заказы 24 часа*
 

Почему летают самолеты: Почему летит самолёт — аппарат тяжелее воздуха

0

Почему летит самолёт — аппарат тяжелее воздуха

Наверно, нет человека, который глядя, как летит самолёт, не задавался вопросом: «Как он это делает?»

Люди всегда мечтали летать. Первым воздухоплавателем попытавшимся взлететь с помощью крыльев, можно, наверное, считать Икара. Затем, на протяжении тысячелетий у него было множество последователей, но настоящий успех выпал на долю братьев Райт. Именно они считаются изобретателями самолёта.

самолёт братьев райт

Видя на земле огромные пассажирские лайнеры, двухэтажные Боинги, например, совершенно невозможно понять, как эта многотонная металлическая махина поднимается в воздух, настолько это кажется противоестественным. Мало того, даже люди, всю жизнь проработавшие в смежных с авиацией отраслях и, безусловно, знающие теорию воздухоплавания, иногда честно признаются, что не понимают, как летают самолёты. Но мы все же попробуем разобраться.

Полёт

Самолёт держится в воздухе благодаря действующей на него «подъёмной силе», которая возникает только в движении, которое обеспечивают двигатели, закреплённые на крыльях или фюзеляже.

  • Реактивные двигатели выбрасывают назад струю продуктов сгорания керосина или другого авиационного топлива, толкая самолёт вперёд.
  • Лопасти винтового двигателя как бы ввинчиваются в воздух и тянут самолёт за собой.

Подъемная сила

Подъемная сила возникает, когда набегающий поток воздуха обтекает крыло. Благодаря особой форме сечения крыла, часть потока над крылом имеет большую скорость, чем поток под крылом. Это происходит потому, что верхняя поверхность крыла выпуклая, в отличие от плоской нижней. В итоге воздуху, обтекающему крыло сверху, приходится пройти больший путь, соответственно с большей скоростью. А чем больше скорость потока, тем меньше давление в нём, и наоборот. Чем меньше скорость — тем больше давление.

Профиль крыла

В 1838 году, когда ещё аэродинамики, как таковой, не существовало, швейцарский физик Даниил Бернулли описал это явление, сформулировав закон, названный по его имени. Бернулли, правда, описывал течение потоков жидкости, но с возникновением и развитием авиации, его открытие оказалось как нельзя более кстати. Давление под крылом превышает давление сверху и выталкивает крыло, а с ним и самолёт, вверх.

Другое слагаемое подъёмной силы — так называемый «угол атаки». Крыло располагается под острым углом к встречному потоку воздуха, благодаря чему давление под крылом выше, чем сверху.

С какой скоростью летают самолёты

Для возникновения подъёмной силы необходима определённая, и довольно высокая, скорость движения. Различают минимальную скорость, она необходима для отрыва от земли, максимальную, и крейсерскую, на которой самолёт летит большую часть маршрута, она составляет около 80% максимальной. Крейсерская скорость современных пассажирских лайнеров 850-950 км в час.

Ещё есть понятие путевой скорости, которая складывается из собственной скорости самолёта и скорости воздушных потоков, которые ему приходится преодолевать. Именно, исходя из неё, рассчитывают продолжительность рейса.

Скорость, необходимая для взлёта зависит от массы самолёта, и для современных пассажирских судов составляет от 180 до 280 км в час. Примерно на такой же скорости производится посадка.

Высота

Высота полёта тоже выбирается не произвольно, а определяется большим количеством факторов, соображениями экономии топлива и безопасности.

У поверхности земли воздух более плотный, соответственно, он оказывает большое сопротивление движению, вызывая повышенный расход топлива. С увеличением высоты воздух становится более разряжённым, и сопротивление уменьшается. Оптимальной высотой для полёта считается высота около 10 000 метров. Расход топлива при этом минимален.

Перелет самолета

Ещё одним существенным плюсом полётов на больших высотах является отсутствие здесь птиц, столкновения с которыми не раз приводили к катастрофам.

Подниматься выше 12 000-13 000 метров гражданские самолёты не могут, так как слишком сильное разряжение препятствует нормальной работе двигателей.

Управление самолётом

Управление самолётом осуществляется путём увеличения или уменьшения тяги двигателя. При этом изменяется скорость, соответственно подъёмная сила и высота полёта. Для боле тонкого управления процессами изменения высоты и поворотов служат средства механизации крыла и рули, находящиеся на хвостовом оперении.

Взлёт и посадка

Чтобы подъёмная сила стала достаточной, для отрыва самолёта от земли, он должен развить достаточную скорость. Для этого служат взлётно-посадочные полосы. Для тяжёлых пассажирских или транспортных самолётов нужны длинные ВПП, длиной 3-4 километра.

Взлёт

За состоянием полос тщательно следят аэродромные службы, поддерживая их в идеально чистом состоянии, так как инородные предметы, попадая в двигатель, могут привести к аварии, а снег и лёд на полосе представляют большую опасность при взлёте и посадке.

При разбеге самолёта наступает момент, после которого отменить взлёт уже нельзя, так как скорость становится настолько велика, что самолёт уже не сможет остановиться в пределах полосы. Это так и называется — «скорость принятия решения».

Посадка — очень ответственный момент полёта, лётчики постепенно сбрасывают скорость, вследствие чего уменьшается подъёмная сила и самолёт снижается. Перед самой землёй скорость уже такая низкая, что на крыльях выпускаются закрылки, которые несколько увеличивают подъёмную силу и позволяют мягко посадить самолёт.

Таким образом, как бы странно нам это не казалось, самолёты летают, причём в строгом соответствии с законами физики.

Научно-технические мифы, часть 1. Почему летают самолеты? / ХабрВ современном мире многие люди интересуются наукой и техникой и пытаются хотя бы в общих чертах понять, как работают вещи, которые их окружают. Благодаря этому стремлению к просвещению существует научно-просветительская литература и сайты, подобные Гиктаймсу. А поскольку читать и воспринимать ряды формул большинству людей затруднительно, то излагаемые в подобных изданиях теории неизбежно подвергаются значительному упрощению в попытке донести до читателя «суть» идеи с помощью простого и понятного объяснения которое легко воспринять и запомнить. К сожалению, некоторые из подобных «простых объяснений» являются в корне неверными
, но при этом оказываются настолько «очевидными», что не подвергаясь особому сомнению начинают кочевать из одного издания в другое и нередко становятся доминирующей точкой зрения, несмотря на свою ошибочность.

В качестве одного из примеров попробуйте ответить на простой вопрос: «откуда возникает подъемная сила в крыле самолета»?

Если в Вашем объяснении фигурируют «разная длина верхней и нижней поверхности крыла», «разная скорость потока воздуха на верхней и нижней кромках крыла» и «закон Бернулли», то я вынужден Вам сообщить, что Вы скорее всего стали жертвой популярнейшего мифа, который преподают порою даже в школьной программе.

Давайте для начала напомним, о чем идет речь

Объяснение подъемной силы крыла в рамках мифа выглядит следующим образом:

  1. Крыло имеет несимметричный профиль снизу и сверху
  2. Непрерывный поток воздуха разделяется крылом на две части, одна из которых проходит над крылом, а другая под ним
  3. Мы рассматриваем ламинарное обтекание, в котором поток воздуха плотно прилегает к поверхности крыла
  4. Поскольку профиль несимметричен, то для того чтобы снова сойтись за крылом в одной точке «верхнему» потоку нужно проделать больший путь, чем «нижнему», поэтому воздуху над крылом приходится двигаться с большей скоростью чем под ним
  5. Согласно закону Бернулли статическое давление в потоке уменьшается с ростом скорости потока, поэтому в потоке над крылом статическое давление будет ниже
  6. Разница давлений в потоке под крылом и над ним и составляет подъемную силу

А для демонстрации этой идеи достаточно простого гибкого и легкого листа бумаги. Берем лист, подносим его ко рту, и дуем над ним чтобы создать модель в которой поток воздуха над листом бумаги движется быстрее чем под ним. И вуаля — с первой или второй попытки лист бумаги презрев тяготение действительно поднимается под действием подъемной силы вверх. Теорема доказана!

… или все-таки нет?..

Существует история (я правда не знаю насколько она правдива), что одним из первых людей предложивших, подобную теорию был не кто иной, как сам Альберт Эйнштейн. Согласно этой истории в 1916 году он написал соответствующую статью и на её основе предложил свою версию «идеального крыла», которое, по его мнению, максимизировало разницу скоростей над крылом и под ним, и в профиль выглядело примерно вот так:

В аэродинамической трубе продули полноценную модель крыла с этим профилем, но увы — её аэродинамические качества оказались на редкость плохими. В отличие — парадоксально! — от многих крыльев с идеально симметричным профилем, в которых путь воздуха над крылом и под ним должен был быть принципиально одинаков. В рассуждениях Эйнштейна явно что-то было неправильно. И вероятно наиболее явным проявлением этой неправильности было то что некоторые пилоты в качестве акробатического трюка стали летать на своих самолетах вверх ногами. У первых самолетов, которые пробовали перевернуться в полете, возникали проблемы с топливом и маслом, которое не текло туда, куда нужно, и вытекало там, где не нужно, но после того, как в 30-х годах прошлого века энтузиастами аэробатики были созданы топливные и масляные системы, способные работать длительное время в перевернутом положении, полет «вверх ногами» стал обычным зрелищем на авиашоу. В 1933, к примеру, один американец и вовсе совершил полет вверх ногами из Сан-Диего в Лос-Анджелес. Каким-то волшебным образом перевернутое крыло по-прежнему генерировало подъемную силу, направленную вверх.

Посмотрите на эту картинку — на ней изображен самолет, аналогичный тому, на котором был установлен рекорд полета в перевернутом положении. Обратите внимание на обычный профиль крыла (Boeing-106B airfoil) который, согласно приведенным выше рассуждениям, должен создавать подъемную силу от нижней поверхности к верхней.

Итак, у нашей простой модели подъемной силы крыла есть некоторые трудности, которые можно в целом свести к двум простым наблюдениям:

  1. Подъемная сила крыла зависит от его ориентации относительно набегающего потока воздуха — угла атаки
  2. Симметричные профили (в том числе и банальный плоский лист фанеры) тоже создают подъемную силу

В чем же причина ошибки? Оказывается, что в приведенном в начале статьи рассуждении совершенно неверен (и вообще говоря, просто взят с потолка) пункт №4. Визуализация потока воздуха вокруг крыла в аэродинамической трубе показывает, что фронт потока, разделенный на две части крылом, вовсе не смыкается обратно за кромкой крыла.

Проще говоря, воздух «не знает», что ему нужно двигаться с какой-то определенной скоростью вокруг крыла, чтобы выполнить какое-то условие, которое нам кажется очевидным. И хотя скорость потока над крылом действительно выше, чем под ним, это является не причиной образования подъемной силы а следствием того, что над крылом существует область пониженного давления, а под крылом — область повышенного. Попадая из области нормального давления в разреженную область, воздух разгоняется перепадом давлений, а попадая в область с повышенным давлением — тормозится. Важный частный пример столь «не-бернуллевского» поведения наглядно демонстрируют экранопланы: при приближении крыла к земле его подъемная сила возрастает (область повышенного давления поджимается землей), тогда как в рамках «бернуллевских» рассуждений крыло на пару с землей формируют нечто вроде сужающегося тоннеля что в рамках наивных рассуждений должно было бы разгонять воздух и притягивать за счет этого крыло к земле подобно тому, как это делается в схожих по смыслу рассуждениях о «взаимном притяжении проходящих на параллельных курсах пароходах». Причем в случае экраноплана ситуация во многом даже хуже, поскольку одна из «стенок» этого тоннеля движется с высокой скоростью навстречу крылу, дополнительно «разгоняя» тем самым воздух и способствуя еще большему снижению подъемной силы. Однако реальная практика «экранного эффекта» демонстрирует прямо противоположную тенденцию, наглядно демонстрируя опасность логики рассуждений о подъемной силе построенных на наивных попытках угадать поле скоростей потока воздуха вокруг крыла.

Как это ни странно, значительно более приближенное к истине объяснение дает другая неверная теория подъемной силы, отвергнутая еще в XIX веке. Сэр Исаак Ньютон предполагал, что взаимодействие объекта с набегающим воздушным потоком можно моделировать, предположив, что набегающий поток состоит из крошечных частиц, ударяющихся об объект и отскакивающих от него. При наклонном расположении объекта относительно набегающего потока частицы будут преимущественно отражаться объектом вниз и в силу закона сохранения импульса при каждом отклонении частицы потока вниз объект будет получать импульс движения вверх. Идеальным крылом в подобной модели был бы плоский воздушный змей, наклоненный к набегающему потоку:

Подъемная сила в этой модели возникает за счет того, что крыло направляет часть воздушного потока вниз, это перенаправление требует приложения определенной силы к потоку воздуха, а подъемная сила является соответствующей силой противодействия со стороны воздушного потока на крыло. И хотя исходная «ударная» модель вообще говоря неверна, в подобной обобщенной формулировке это объяснение действительно верно. Любое крыло работает за счет того, что отклоняет часть набегающего потока воздуха вниз и это, в частности, объясняет, почему подъемная сила крыла пропорциональна плотности потока воздуха и квадрату его скорости. Это дает нам первое приближение к правильному ответу: крыло создает подъемную силу потому что линии тока воздуха после прохождения крыла в среднем оказываются направлены вниз. И чем сильнее мы отклоняем поток вниз (например увеличивая угол атаки) — тем подъемная сила оказывается больше.

Немного неожиданный результат, правда? Однако он пока никак не приближает нас к пониманию того, почему воздух после прохождения крыла оказывается движущимся вниз. То, что Ньютоновская ударная модель неверна, было показано экспериментально опытами, которые продемонстрировали что реальное сопротивление потока ниже, чем предсказывает Ньютоновская модель, а генерируемая подъемная сила — выше. Причиной этих расхождений является то, что в модели Ньютона частички воздуха никак не взаимодействуют друг с другом, тогда как реальные линии тока не могут пересекать друг друга, так как это показано на рисунке выше. «Отскакивающие» под крылом вниз условные «частички воздуха» сталкиваются с другими и начинают «отталкивать» их от крыла еще до того, как они с ним столкнутся, а частички воздушного тока, оказавшиеся над крылом, «выпихивают» частички воздуха, расположенные ниже, в пустое пространство, остающееся за крылом:

Говоря другими словами, взаимодействие «отскочившего» и «набегающего» потоков создает под крылом область высокого давления (красную), а «тень», пробиваемая крылом в потоке, образует область низкого давления (синюю). Первая область отклоняет поток под крылом вниз еще до того, как этот поток соприкоснется с его поверхностью, а вторая заставляет поток над крылом изгибаться вниз, хотя он с крылом не соприкасался вообще. Совокупное давление этих областей по контуру крыла, собственно, и образует в итоге подъемную силу. При этом интересный момент состоит в том, что неизбежно возникающая перед крылом область высокого давления у правильно спроектированного крыла соприкасается с его поверхностью лишь по небольшому участку в передней кромке крыла, тогда как область высокого давления под крылом и область низкого давления над ним соприкасаются с крылом на значительно большой площади. В результате подъемная сила крыла формируемая двумя областями вокруг верхней и нижней поверхностей крыла может быть намного больше, чем сила сопротивления воздуха, которую обеспечивает воздействие области высокого давления, расположенной перед передней кромкой крыла.

Поскольку наличие областей разного давления изгибает линии тока воздуха, то часто удобно определять эти области именно по этому изгибу. К примеру, если линии тока над крылом «загибаются вниз», то в этой области существует градиент давления направленный сверху вниз. И если на достаточно большом удалении над крылом давление является атмосферным, то по мере приближения к крылу сверху вниз давление должно падать и непосредственно над крылом оно окажется ниже атмосферного. Рассмотрев аналогичное «искривление вниз», но уже под крылом, мы получаем, что если начать с достаточно низкой точки под крылом, то, приближаясь к крылу снизу вверх, мы придем в область давления, которое будет выше атмосферного. Аналогичным образом «расталкивание» линий тока перед передней кромкой крыла соответствует существованию перед этой кромкой области повышенного давления. В рамках подобной логики можно сказать, что крыло создает подъемную силу, изгибая линии тока воздуха вокруг крыла. Поскольку линии тока воздуха как бы «прилипают» к поверхности крыла (эффект Коанда) и друг к другу, то, изменяя профиль крыла, мы заставляем воздух двигаться вокруг него по искривленной траектории и формировать в силу этого нужный нам градиент давлений. К примеру, для обеспечения полета вверх ногами достаточно создать нужный угол атаки, направив нос самолета в сторону от земли:

Снова немного неожиданно, правда? Тем не менее это объяснение уже ближе к истине, чем исходная версия «воздух ускоряется над крылом, потому что над крылом ему нужно пройти большее расстояние, чем под ним». Кроме того, в его терминах легче всего понять явление, которое называется «срывом потока» или «сваливанием самолета». В нормальной ситуации увеличивая угол атаки крыла мы увеличиваем тем самым искривление воздушного потока и соответственно подъемную силу. Ценою за это является увеличение аэродинамического сопротивления, поскольку область низкого давления постепенно смещается из положения «над крылом» в положение «слегка за крылом» и соответственно начинает притормаживать самолет. Однако после некоторого предела ситуация неожиданно резко изменяется. Синяя линия на графике — коэффициент подъемной силы, красная — коэффициент сопротивления, горизонтальная ось соответствует углу атаки.

Дело в том, что «прилипаемость» потока к обтекаемой поверхности ограничена, и если мы попытаемся слишком сильно искривить поток воздуха, то он начнет «отрываться» от поверхности крыла. Образующаяся за крылом область низкого давления начинает «засасывать» не поток воздуха, идущий с ведущей кромки крыла, а воздух из области оставшейся за крылом, и подъемная сила генерируемая верхней частью крыла полностью или частично (в зависимости от того, где произошел отрыв) исчезнет, а лобовое сопротивление увеличится.

Для обычного самолета сваливание — это крайне неприятная ситуация. Подъемная сила крыла уменьшается с уменьшением скорости самолета или уменьшением плотности воздуха, а кроме того поворот самолета требует большей подъемной силы, чем просто горизонтальный полет. В нормальном полете все эти факторы компенсируют именно выбором угла атаки. Чем медленнее летит самолет, чем менее плотный воздух (самолет забрался на большую высоту или садится в жаркую погоду) и чем круче поворот, тем больше приходится делать этот угол. И если неосторожный пилот переходит определенную черту, то подъемная сила упирается в «потолок» и становится недостаточной для удержания самолета в воздухе. Добавляет проблем и увеличившееся сопротивление воздуха, которое ведет к потере скорости и дальнейшему снижению подъемной силы. А в результате самолет начинает падать — «сваливается». Попутно могут возникнуть проблемы с управлением из-за того, что подъемная сила перераспределяется по крылу и начинает пытаться «повернуть» самолет или управляющие поверхности оказываются в области сорванного потока и перестают генерировать достаточное управляющее усилие. А в крутом повороте, к примеру, поток может сорвать лишь с одного крыла, в результате чего самолет начнет не просто терять высоту, но и вращаться — войдет в штопор. Сочетание этих факторов остается одной из нередких причин авиакатастроф. С другой стороны, некоторые современные боевые самолеты специально проектируются таким специальным образом, чтобы сохранять управляемость в подобных закритических режимах атаки. Это позволяет подобным истребителям при необходимости резко тормозить в воздухе. Иногда это используется для торможения в прямолинейном полете, но чаще востребовано в виражах, поскольку чем меньше скорость, тем меньше при прочих равных радиус поворота самолета. И да-да, Вы угадали — именно это та самая «сверхманевренность», которой заслуженно гордятся специалисты проектировавшие аэродинамику отечественных истребителей 4 и 5 поколений.

Однако мы пока так и не ответили на основной вопрос: откуда, собственно, возникают области повышенного и пониженного давления вокруг крыла в набегающем потоке воздуха? Ведь оба явления («прилипание потока к крылу» и «над крылом воздух движется быстрее»), которыми можно объяснить полет, являются следствием определенного распределения давлений вокруг крыла, а не его причиной. Но почему формируется именно такая картина давлений, а не какая-то другая?

К сожалению, ответ на этот вопрос уже неизбежно требует привлечения математики. Давайте представим себе, что наше крыло является бесконечно длинным и одинаковым по всей длине, так что движение воздуха вокруг него можно моделировать в двумерном срезе. И давайте предположим, для начала, что в роли нашего крыла выступает… бесконечно длинный цилиндр в потоке идеальной жидкости. В силу бесконечности цилиндра такую задачу можно свести к рассмотрению обтекания круга в плоскости потоком идеальной жидкости. Для столь тривиального и идеализированного случая существует точное аналитическое решение, предсказывающее, что при неподвижном цилиндре общее воздействие жидкости на цилиндр будет нулевым.

А теперь давайте рассмотрим некое хитрое преобразование плоскости на себя, которое математики называют конформным отображением. Оказывается можно подобрать такое преобразование, которое с одной стороны сохраняет уравнения движения потока жидкости, а с другой трансформирует круг в фигуру, имеющую похожий на крыло профиль. Тогда трансформированные тем же самым преобразованием линии тока жидкости для цилиндра становятся решением для тока жидкости вокруг нашего импровизированного крыла.

Наш исходный круг в потоке идеальной жидкости имеет две точки, в которых линии тока соприкасаются с поверхностью круга, и следовательно те же две точки будут существовать и на поверхности профиля после применения к цилиндру преобразования. И в зависимости от поворота потока относительно исходного цилиндра («угла атаки») они будут располагаться в разных местах поверхности сформированного «крыла». И почти всегда это будет означать, что часть линий тока жидкости вокруг профиля должна будет огибать заднюю, острую кромку крыла, как показано на картинке выше.

Это потенциально возможно для идеальной жидкости. Но не для реальной.

Наличие в реальной жидкости или газе даже небольшого трения (вязкости) приводит к тому, что поток подобный изображенному на картинке немедленно нарушается — верхний поток будет сдвигать точку где линия тока соприкасается с поверхностью крыла до тех, пор пока она не окажется строго на задней кромке крыла (постулат Жуковского-Чаплыгина, он же аэродинамическое условие Кутты). И если преобразовать «крыло» обратно в «цилиндр», то сдвинувшиеся линии тока окажутся примерно такими:

Но если вязкость жидкости (или газа) очень мала, то получившееся подобным путем решение должно подходить и для цилиндра. И оказывается, что такое решение действительно можно найти, если предположить, что цилиндр вращается. То есть физические ограничения, связанные с перетоком жидкости вокруг задней кромки крыла приводят, к тому, что движение жидкости из всех возможных решений будет стремиться прийти к одному конкретному решению, в котором часть потока жидкости вращается вокруг эквивалентного цилиндра, отрываясь от него в строго определенной точке. А поскольку вращающийся цилиндр в потоке жидкости создает подъемную силу, то ее создает и соответствующее крыло. Компонент движения потока соответствующий этой «скорости вращения цилиндра» называется циркуляцией потока вокруг крыла, а теорема Жуковского говорит о том, что аналогичную характеристику можно обобщить для произвольного крыла, и позволяет количественно рассчитывать подъемную силу крыла на ее основе. В рамках этой теории подъемная сила крыла обеспечивается за счет циркуляции воздуха вокруг крыла, которая порождается и поддерживается у движущегося крыла указанными выше силами трения, исключающими переток воздуха вокруг его острой задней кромки.

Удивительный результат, не правда ли?

Описанная теория конечно сильно идеализирована (бесконечно длинное однородное крыло, идеальный однородный несжимаемый поток газа / жидкости без трения вокруг крыла), но дает довольно точное приближение для реальных крыльев и обычного воздуха. Только не воспринимайте в ее рамках циркуляцию как свидетельство того, что воздух действительно вращается вокруг крыла. Циркуляция — это просто число, показывающее, насколько должен отличаться по скорости поток на верхней и нижней кромках крыла, чтобы решение движений потока жидкости обеспечило отрыв линий тока строго на задней кромке крыла. Не стоит также воспринимать «принцип острой задней кромки крыла» как необходимое условие для возникновения подъемной силы: последовательность рассуждений вместо этого звучит как «если у крыла острая задняя кромка, то подъемная сила формируется так-то».

Попробуем подытожить. Взаимодействие воздуха с крылом формирует вокруг крыла области высокого и низкого давления, которые искривляют воздушный поток так, что он огибает крыло. Острая задняя кромка крыла приводит к тому, что в идеальном потоке из всех потенциальных решений уравнений движения реализуется только одно конкретное, исключающее переток воздуха вокруг острой задней кромки. Это решение зависит от угла атаки и у обычного крыла имеет область пониженного давления над крылом и область повышенного давления — под ним. Соответствующая разница давлений формирует подъемную силу крыла, заставляет воздух двигаться быстрее над верхней кромкой крыла и замедляет воздух под нижней. Количественно подъемную силу удобно описывать численно через эту разницу скоростей над крылом и под ним в виде характеристики, которая называется «циркуляцией» потока. При этом в соответствии с третьим законом Ньютона действующая на крыло подъемная сила означает, что крыло отклоняет вниз часть набегающего воздушного потока — для того, чтобы самолет мог лететь, часть окружающего его воздуха должна непрерывно двигаться вниз. Опираясь на этот движущийся вниз поток воздуха самолет и «летит».

Простое же объяснение с «воздухом, которому нужно пройти более длинный путь над крылом, чем под ним» — неверно.

Почему самолёт летает? | Наука и жизнь

Человек полетит, опираясь не на силу своих мускулов, а на силу своего разума.
Н. Е. Жуковский

Фото И. Дмитриева.

Рис. 1. При взаимодействии плоской пластины с потоком воздуха возникают подъёмная сила и сила сопротивления.

Рис. 2. При обтекании потоком воздуха выгнутого крыла давление на его нижней поверхности будет выше, чем на верхней. Разница в давлениях даёт подъёмную силу.

Рис. 3. Отклоняя ручку управления, лётчик изменяет форму руля высоты (1—3) и крыльев (4—6).

Рис. 4. Руль направления отклоняют педалями.

Вы когда-нибудь летали? Не на самолёте, не на вертолёте, не на воздушном шаре, а сами — как птица? Не приходилось? И мне не довелось. Впрочем, насколько я знаю, это не удалось никому.

Почему же человек не смог этого сделать, ведь кажется, нужно лишь скопировать крылья птицы, прикрепить их к рукам и, подражая пернатым, взмыть в поднебесье. Но не тут-то было. Оказалось, что человеку не хватает сил, чтобы поднять себя в воздух на машущих крыльях. Рассказами о таких попытках пестрят летописи всех народов, от древнекитайских и арабских (первое упоминание содержится в китайской хронике «Цаньханьшу», написанной ещё в I в. н.э.) до европейских и русских. Мастера в разных странах использовали для изготовления крыльев слюду, тонкие прутья, кожу, перья, но полететь так никому и не удалось.

В 1505 году великий Леонардо да Винчи писал: «… когда птица находится в ветре, она может держаться в нём без взмахов крыльями, ибо ту же роль, которую при неподвижном воздухе крыло выполняет в отношении воздуха, выполняет движущийся воздух в отношении крыльев при неподвижных крыльях». Звучит это сложно, но по сути не просто верно, а гениально. Из этой идеи следует: чтобы полететь, не нужно размахивать крыльями, нужно заставить их двигаться относительно воздуха. А для этого крылу нужно просто сообщить горизонтальную скорость. От взаимодействия крыла с воздухом возникнет подъёмная сила, и, как только её величина окажется больше величины веса самого крыла и всего, что с ним связано, начнётся полёт. Дело оставалось за малым: сделать подходящее крыло и суметь разогнать его до необходимой скорости.

Но опять возник вопрос: какой формы должно быть крыло? Первые эксперименты проводили с крыльями плоской формы. Посмотрите на схему (рис. 1). Если на плоскую пластину под небольшим углом действует набегающий поток воздуха, то возникают подъёмная сила и сила сопротивления. Сила сопротивления старается «сдуть» пластину назад, а подъёмная сила — поднять. Угол, под которым воздух дует на крыло, называется углом атаки. Чем больше угол атаки, то есть чем круче к потоку наклонена пластина, тем больше подъёмная сила, но вырастает и сила сопротивления.

Ещё в 80-х годах XIX века учёные выяснили, что оптимальный угол атаки для плоского крыла лежит в пределах от 2 до 9 градусов. Если угол сделать меньше — сопротивление будет небольшим, но и подъёмная сила маленькой. Если развернуться круче к потоку — сопротивление окажется так велико, что крыло превратится скорее в парус. Отношение величины подъёмной силы к величине силы сопротивления называется аэродинамическим качеством. Это один из самых важных критериев, относящихся к летательному аппарату. Оно и понятно, ведь чем выше аэродинамическое качество, тем меньше энергии тратит летательный аппарат на преодоление сопротивления воздуха.

Вернёмся к крылу. Наблюдательные люди очень давно заметили, что у птиц крылья не плоские. Всё в тех же 1880-х годах английский физик Горацио Филлипс провёл эксперименты в аэродинамической трубе собственной конструкции и доказал, что аэродинамическое качество выпуклой пластины значительно больше, чем плоской. Нашлось и довольно простое объяснение этому факту.

Представьте, что вам удалось сделать крыло, у которого нижняя поверхность плоская, а верхняя — выпуклая. (Очень просто склеить модель такого крыла из обычного листа бумаги.) Теперь посмотрим на вторую схему (рис. 2). Поток воздуха, набегающий на переднюю кромку крыла, делится на две части: одна обтекает крыло снизу, другая — сверху. Обратите внимание, что сверху воздуху приходится пройти путь несколько больший, чем снизу, следовательно, сверху скорость воздуха будет тоже чуть больше, чем снизу, не так ли? Но физикам известно, что с увеличением скорости давление в потоке газа падает. Смотрите, что получается: давление воздуха под крылом оказывается выше, чем над ним! Разница давлений направлена вверх, вот вам и подъёмная сила. А если добавить угол атаки, то подъёмная сила ещё увеличится.

Одним из первых вогнутые крылья сделал талантливый немецкий инженер Отто Лилиенталь. Он построил 12 моделей планеров и совершил на них около тысячи полётов. 10 августа 1896 года во время полёта в Берлине его планер перевернуло внезапным порывом ветра и отважный пилот-исследователь погиб. Теоретическое обоснование парения птиц, продолженное нашим великим соотечественником Николаем Егоровичем Жуковским, определило всё дальнейшее развитие авиации.

А теперь попробуем разобраться, как подъёмную силу можно изменять и использовать для управления самолётом. У всех современных самолётов крылья сделаны из нескольких элементов. Основная часть крыла неподвижна относительно фюзеляжа, а на задней кромке устанавливают как бы небольшие дополнительные крылышки-закрылки. В полёте они продолжают профиль крыла, а на взлёте, при посадке или при манёврах в воздухе могут отклоняться вниз. При этом подъёмная сила крыла возрастает. Такие же маленькие дополнительные поворотные крылышки есть на вертикальном оперении (это руль направления) и на горизонтальном оперении (это руль высоты). Если такую дополнительную часть отклонить, то форма крыла или оперения меняется, и меняется его подъёмная сила. Посмотрим на третью схему (рис. 3 на с. 83). В общем случае подъёмная сила увеличивается в сторону, противоположную отклонению рулевой поверхности.

Расскажу в самых общих чертах, как управляется самолёт. Чтобы подняться вверх, нужно слегка опустить хвост, тогда возрастёт угол атаки крыла, самолёт начнёт набирать высоту. Для этого пилот должен потянуть штурвал (ручку управления) на себя. Руль высоты на стабилизаторе отклоняется вверх, его подъёмная сила уменьшается и хвост опускается. При этом угол атаки крыла увеличивается и его подъёмная сила возрастает. Чтобы спикировать, пилот наклоняет штурвал вперёд. Руль высоты отклоняется вниз, самолёт задирает хвост и начинает снижение.

Наклонить машину вправо или влево можно при помощи элеронов. Они расположены на концевых частях крыльев. Наклон ручки управления (или поворот штурвала) к правому борту заставляет правый элерон подняться, а левый — опуститься. Соответственно подъёмная сила на левом крыле возрастает, а на правом падает, и самолёт наклоняется вправо. Ну а как наклонить самолёт влево — догадайтесь сами.

Рулём направления управляют с помощью педалей (рис. 4). Толкаете вперёд левую педаль — самолёт поворачивает налево, толкаете правую — направо. Но делает это машина «лениво». А вот чтобы самолёт быстро развернулся, нужно сделать несколько движений. Предположим, вы собираетесь повернуть влево. Для этого нужно накренить машину влево (повернуть штурвал или наклонить ручку управления) и в то же время нажать на левую педаль и взять штурвал на себя.

Вот, собственно, и всё. Вы можете спросить, почему же лётчиков учат летать несколько лет? Да потому, что просто всё только на бумаге. Вот вы дали самолёту крен, взяли ручку на себя, а самолёт вдруг начал съезжать вбок, как на скользкой горке. Почему? Что делать? Или в горизонтальном полёте вы решили подняться повыше, взяли штурвал на себя, а самолёт вдруг, вместо того чтобы забираться на высоту, клюнул носом и по спирали полетел вниз, как говорят, вошёл в «штопор».

Пилоту в полёте нужно следить за работой двигателей, за направлением и высотой, за погодой и пассажирами, за собственным курсом и курсами других самолётов и множеством других важных параметров. Пилот должен знать теорию полёта, расположение и порядок работы органов управления, должен быть внимательным и смелым, здоровым, а самое главное — любить летать.

Почему самолёты летают, а крыльями не машут? Инфографика | Инфографика

Полёт самолётов обеспечивается действием подъёмной силы крыла, вызванной разницей между давлением воздуха под крылом и над крылом. Эта разница возникает благодаря особой форме крыла, многочисленные расчёты и эксперименты с которой осуществили братья Райт перед своим знаменитым полётом.

Подъёмная сила крыла

Аэростаты и дирижабли поднимаются и держатся в воздухе благодаря силе Архимеда: на любой предмет, находящийся в атмосфере, действует подъёмная сила, равная весу воздуха, вытесненного этим предметом. Если баллон аэростата заполнен газом легче воздуха, то сила Архимеда будет выталкивать его вверх — так же как предмет, который легче воды, выталкивается на её поверхность. Однако для аппаратов тяжелее воздуха этот способ не подходит — самолётам требовался иной принцип создания подъёмной силы.

Основой теории крылатого полёта стал закон Бернулли, согласно которому при увеличении скорости воздушного потока статическое давление воздуха снижается. Следовательно, если скорость воздуха над крылом будет выше скорости воздуха под крылом, то давление воздуха на крыло сверху будет меньше давления воздуха, действующего на крыло снизу — а значит, возникнет подъёмная сила, толкающая крыло вверх. Для этого нужна особая форма крыла, более выпуклая сверху — таким образом воздуху, обтекающему крыло сверху, приходится пройти большее расстояние, чем нижнему воздушному потоку, т. е. скорость потока над крылом становится больше, что и требуется для создания подъёмной силы крыла.

Однако применение этого теоретического принципа на практике зависит от множества условий: плотности воздуха и скорости набегания воздушного потока, геометрии крыла и угла атаки крыла, значения числа Рейнольдса и других факторов. Определение коэффициентов подъёмной силы для разных типов крыла и управление самолётом за счёт её изменения стали вкладом братьев Райт в науку о полёте самолётов.

Изобретения братьев Райт

17 декабря 1903 года братья Райт совершили первый задокументированный полёт самолёта. Полёт братьев Райт стал результатом не только многочисленных экспериментов, но и тщательных предварительных расчётов, касающихся подъёмной силы крыла и управления летательных аппаратов с её помощью. Ключевым достижением братьев Райт стала управляемость полёта. 

Их предшественники рассматривали воздушный полёт как плоскостной, аналогичный движению автомобиля или корабля по земной поверхности — только над поверхностью земли. Крен или вращение самолёта не рассматривались или считались нежелательными, которыми пилот управлять не может. В то же время братья Райт видели в этом способ абсолютного контроля над летательным аппаратом. Основываясь на своих наблюдениях, Уилбер Райт обнаружил, что птицы поворачивают влево или вправо, изменяя угол окончаний своих крыльев. Подобный способ позволил бы самолёту создавать крен в сторону поворота — как это делают птицы или мотоциклисты на повороте, а также восстановить равновесие при наклоне самолёта порывом бокового ветра (что стало причиной гибели многих первых авиаторов). В стремлении повторить этот эффект братья Райт изобрели метод перекоса крыла: перекос крыльев или их искривление увеличивает подъёмную силу на одном конце крыла, которое поднимается, начиная поворот в направлении более низкого конца. Сочетание этого метода (в т. ч. с помощью элеронов) с традиционными рулями высоты обеспечило полный контроль над летательным аппаратом и стало, по сути, началом истории современных самолётов.

В ходе экспериментов братья Райт столкнулись с тем, что существовавшие на тот момент формулы расчёта подъёмной силы крыла оказались весьма неточными. Для расчётов требовались значения коэффициента подъёмной силы, который зависит от формы крыла. Для их определения братья Райт создали аэродинамическую трубу, в которой испытали около 200 миниатюрных моделей разных крыльев. Внутри трубы находились изобретённые ими «весы» для крыльев. Это устройство позволило сделать расчёт коэффициентов подъёмной силы для каждого типа крыла.

 

Самолеты, особенно вблизи, впечатляют своими габаритами и  ма ссой. Остается при этом не понятным, как такой громоздкий и тяжелый объект поднимается в небесную высь. Притом,          ответить на это могут даже не все взрослые, а вопросы детей частенько способны поставить в тупик. Возникновение       подъёмной силы часто объясняют разностью статических      давлений воздушных потоков на верхней и нижней поверхности крыла самолёта.

Конструкция крыла такова, что верхняя часть его профиля         имеет выпуклую форму. Воздушный поток, обтекающий крыло, разделяется на два: верхний и нижний. Скорость нижнего потока остаётся практически неизменной. А вот скорость верхнего возрастает за счёт того, что он должен преодолеть больший путь за то же время. Следовательно, давление над крылом становится ниже. Из-за разницы этих давлений возникает подъёмная сила, которая толкает крыло вверх, а вместе с ним поднимается и самолёт. И чем больше эта разница, тем больше и подъёмная сила
Самолёт может взлететь только в том случае, если подъёмная сила больше его веса.  Скорость он развивает с помощью двигате 

лей. С увеличением скорости увеличивается и подъёмная сила. И самолёт поднимается вверх. Каждый из вас делал, наверное, бумажные самолетики и с силой запускал их. Современный самолет, даже весом в десятки тонн, его крыло должно иметь достаточную площадь. На подъемную силу крыла влияет множество параметров, таких как профиль, площадь, форма крыла в плане, угол атаки, скорость и плотность воздушного потока. Каждый самолет имеет свою минимальную скорость, при которой он может взлетать и лететь, не падая. Так, минимальная скорость современных пассажирских самолетов находится в пределах от 180 до 250 км/ч.Для того чтобы подъемная сила смогла поднять в воздух Именно если такой самолетик с силой бросить вверх, он может далеко полететь, а если пустить слегка — упадет сразу же на землю. Значит, чтобы бумажный самолетик удерживался в воздухе, он должен постоянно двигаться вперед. Большие самолеты двигаются вперед за счет мощных двигателей, вращающих пропеллер. Быстро вращающийся пропеллер выбрасывает за себя огромные массы воздуха, обеспечивая поступательное движение самолета.

Если подъёмная сила и вес самолёта равны, то он летит горизонтально.

При создании самолета крылу уделяется огромное внимание, потому что именно от него будет зависеть безопасность выполнения полетов. Глядя в иллюминатор, пассажир замечает, что оно гнется и вот-вот сломается. Не бойтесь, оно выдерживает просто колоссальные нагрузки. 
Если откажет двигатель самолета — ничего страшного, самолет долетит на втором. Если отказали оба двигателя

 — история знает случаи, что и в таких обстоятельствах садились на посадку. Шасси? Ничего не мешает самолету сесть на брюхо, при соблюдении определенных мер пожарной безопасности он даже не загорится. Но самолет никогда не сможет лететь без крыла.

Почему самолеты летают так высоко?

Потому что именно оно создает подъемную силу. Высота полета современных реактивных самолетов находится в пределах от 5000 до 10000 метров над уровнем моря. Это объясняется очень просто: на такой высоте плотность воздуха намного меньше, а, следовательно, меньше и сопротивление воздуха. Самолеты летают на больших высотах, потому что при полете на высоте 10 километров самолет расходует на 80% меньше горючего, чем при полете на высоте в один километр. Однако почему же тогда они не  летают еще выше, в верхних слоях атмосферы, где плотность воздуха еще меньше? Дело в том, что для создания необходимой тяги двигателем самолета необходим определенный минимальный запас воздуха. Поэтому у каждого самолета имеется наибольший безопасный предел высоты полета, называемый также «практический потолок». К примеру, практический потолок самолета Ту-154 составляет около 12100 метров.

Почему самолету нужно сжечь все топливо перед посадкой?

При проектировании самолета (как гражданского, так и военного, кстати) и в частности его шасси всегда есть такой параметр, как максимальная посадочная масса. Совершенно очевидно, что это максимальная масса, которую выдержит шасси при посадке. Когда самолет готовят к выполнению задания в него заливают столько топлива, что бы долететь до запланированного места посадки + навигационный запас топлива. Когда все штатно, топливо не сливают. Если экипаж принял решение сажать машину, а ее масса превышает максимальную посадочную, то от топлива избавляются. Особенно часто такие ситуации происходят в случае серьезного отказа сразу после взлета. Так же следует заметить, что не все самолеты просто «дожигают» топливо, чтобы «сбросить вес», некоторые оборудованы системой аварийного слива топлива.

Резюмируя, можно сказать, что самолет дожигает топливо для того, чтобы нагрузка на шасси при посадке не превосходила максимальную, в противном случае шасси просто не выдержит.
При проектировании самолета (как гражданского, так и военного, кстати) и в частности его шасси всегда есть такой параметр, как максимальная посадочная масса. Совершенно очевидно, что это максимальная масса, которую выдержит шасси при посадке. Когда самолет готовят к выполнению задания в него заливают столько топлива, что бы долететь до запланированного места посадки + навигационный запас топлива. Когда все штатно, топливо не сливают. Если экипаж принял решение сажать машину, а ее масса превышает максимальную посадочную, то от топлива избавляются. Особенно часто такие ситуации происходят в случае серьезного отказа сразу после взлета. Так же следует заметить, что не все самолеты просто «дожигают» топливо, чтобы «сбросить вес», некоторые оборудованы системой аварийного слива топлива.

Многие боятся упасть вниз с высоты 10 км. Это невозможно из-за сильного давления под крыльями самолета. Он держится на воздухе не хуже, чем машина на шоссе. Его можно поставить на хвост, повернуть вокруг своей оси на 100 градусов, направить вниз — и если отпустить штурвал, то самолет просто будет покачиваться в воздухе, как лодка на волнах.

✈ Почему самолёты летают пустыми. Опасно ли это?

Пустые самолёты — не редкость в современном мире. Даже до пандемии коронавируса авиалайнеры отправлялись в путь без единого пассажира или с несколькими людьми на борту. Разве это выгодно авиакомпаниям — совершать рейс, когда продан один единственный билет? Опасно ли летать в полупустых самолётах? А во время коронавируса самолёты и вовсе летают без пассажиров на борту, чтобы забрать застрявших в других странах туристов.
Почему самолёты летают пустыми. Опасно ли это?

Фото: pxhere.com

Почему самолёты летают пустыми?
Да, до коронавируса самолёты тоже иногда летали пустыми. В чём же причина? Существует такое понятие, как слот. Это время, выделенное в аэропорту определённому рейсу для прибытия или отправления самолёта. Слот платный и стоит несколько миллионов долларов. Если какое-то время авиакомпания не выполняет перелёты, место переходит к следующему перевозчику в листе ожидания. А значит слот придётся покупать ещё раз, чего ни одна авиакомпания не хочет. Поэтому иногда им приходится совершать пустые рейсы, чтобы «налетать» норму — 80 % времени использования слота. Хотя сейчас, на время пандемии коронавируса, это требование отменили. Авиакомпании освобождены от данного правила до 31 мая 2020.

Ещё одна причина — логистика. Очень многие авиакомпании выполняют рейсы туда-обратно или с промежуточными. Например, перелёт из Москвы в Екатеринбург, а затем — в Хабаровск. Даже если на одном этапе маршрута будет всего один пассажир, авиакомпании необходимо выполнить весь цикл, чтобы доставить клиентов из Екатеринбурга в Хабаровск, а затем снова в Москву. Доходы от выполнения оставшейся части рейсов покроют расходы на рейс с одним пассажиром или вовсе без него.

Какие проблемы может вызывать полупустой?
Самолёт — механизм сложный. При разработке авиалайнера учитываются все, даже самые незначительные на первый взгляд нюансы. Конечно, большое внимание уделяется взлёту с полным салоном.

Каждый самолёт имеет максимальную взлётную массу. В ней учитывается всё: вес пассажиров, багажа, топлива, самого авиалайнера и т.п.

Однако и с пустым салоном самолёт может спокойно выполнять свои функции. Главное — ликвидировать небольшие погрешности. Остановимся на них поподробнее.
Потеря баланса в воздухе
Полёты на полупустых самолётах требуют оперативных действий со стороны перевозчика и вот почему. Самолёты устроены, как гигантские качели. Центр тяжести судна обычно находится рядом с основным шасси, но он может смещаться из-за количества и веса пассажиров, их багажа и топлива. Равновесие необходимо удерживать.
Поэтому в полупустом самолёте пассажиров распределяют по всему салону или добавляют балласт в багажный отсек, чтобы обеспечить баланс. Перед вылетом специалист рассчитывает взлётную массу, складывая вес пустого самолёта, пассажиров, багажа и топлива. Это позволяет определить центр тяжести воздушного судна как можно точнее.

Диспетчер авиакомпании выдаёт пилотам форму с указанием количества пассажиров и их места расположения в салоне. В документе также указано число багажа и ручной клади, и место их погрузки в самолёт. Данные вводятся в бортовой компьютер, который подскажет, нужно ли кого-то пересадить или нет.

У Boeing 737 и Airbus A320 обычно нет проблем с весом и балансом даже при полупустых самолётах, если пассажиры равномерно распределены по салону. Но у машин поменьше центр тяжести может смещаться во время полёта и при условии большого количества пассажиров внутри. Например, у Embraer E175, который имеет тяжёлый хвост. Его центр тяжести смещается по мере того, как сжигается топливо.

Часто задняя часть самолёта переполнена пассажирами эконом-класса, а передняя пустует. Бортовой компьютер сообщает пилотам, что нужно переместить некоторых людей из задней части судна в среднюю или переднюю. Поэтому те, кто купил недорогие билеты, могут попасть в бизнес-класс. Пилоты передают информацию бортпроводникам, и те пересаживают добровольцев.

Кроме E175 проблемы с балансом могут возникать и у самолётов Bombardier серии CRJ. У них тяжелый нос, поэтому эти судна имеют багажную секцию в задней части самолёта для компенсации. Тем не менее, вес всё равно иногда приходится распределять или добавлять.

В некоторые самолёты для равновесия могут загружать тяжёлые мешки с песком или галькой. Их помещают либо в передний, либо в задний багажный отсек в зависимости от типа воздушного судна.

Экологические проблемы
Если с потерей баланса можно справиться, то с экологической составляющей — нет. Не секрет, что самолёты вырабатывают огромное количество топлива во время перелёта. Это приводит к парниковому эффекту, скоплению опасных и ядовитых газов в воздухе, а также другим печальным для природы последствиям.

В сентябре 2019 года Грета Тунберг привлекла внимание к отказу от полётов, выбрав вместо самолёта яхту на солнечных батареях, чтобы добраться на саммит ООН в Нью-Йорке.

Конечно, экоактивисты не поддерживают решение гонять самолёты пустыми, так как они лишний раз выбрасывают в атмосферу углекислый газ, который обладает парниковым эффектом. Однако на данный момент нет эффективного решения проблемы. Авиакомпании совместными усилиями стараются избавить планету от вредного воздействия гражданской авиации. Например, разрабатывают новые виды топлива или облегчают фюзеляжи, кресла и другие тяжёлые элементы самолётов, но решения проблемы пока ещё нет. Так что, полупустые самолёты, как правило, вредят экологии. А вот летать в пустых авиалайнерах безопасно и приятно.
Почему рейсовые самолеты летают не по кратчайшей линии?

Авиационные перелеты обходятся недешево в связи с высокой стоимостью топлива, обслуживания транспортного средства и рядом других факторов. Казалось бы, очевидный способ экономии топлива – запуск самолета по прямой траектории от пункта А до пункта Б.

Однако если изучить карту полетов, сразу становится понятно, что ни одно судно не летает по кратчайшей линии – напрямую. В чем причина?

Маршрутная сеть и круглая форма Земли

Если раньше маршруты полетов зависели от расположения наземных объектов, сейчас самолеты используют в качестве ориентиров радиомаяки. Таким образом появились своего рода «небесные трассы». Современному авиационному транспорту не требуется прокладывать курс между маяками, однако данная система все еще используется на практике. Не нужно забывать и про расстояние до запасных аэропортов.

Интересный факт: ведется активная работа над внедрением технологии свободных маршрутов в воздушном пространстве. Многие авиакомпании уже испытывают их ночью или в выходные дни.

На картах планета Земля представлена в виде двухмерной поверхности. На деле же самолет не может лететь строго по прямой. В качестве самого короткого маршрута может использоваться не линия, а определенный отрезок большой окружности. Таким образом, специалистами выбирается кратчайший путь с учетом формы Земли. В качестве примера можно взять Париж и Ванкувер. Оба города располагаются на широте 49 градусов. Самый короткий маршрут для полета проходит через Гренландию.

Погодные условия и воздушные заторы

Даже для столь массивного и тяжелого рейсового самолета ветер становится серьезным препятствием. В случае сложных погодных условий кратчайший путь может оказаться не таким уж быстрым.

Ветер – не единственная опасность. Снижают скорость движения транспортного средства и даже представляют опасность для него облака, в которых образуются грозы. К опасным погодным условиям можно также отнести град, молнию, обледенение и т.п. Пилоты предпочитают избегать подобных явлений.

Зачастую авиакомпании обладают альтернативными маршрутами на случай особых ситуаций. Даже в воздушном пространстве бывают «пробки». Это происходит из-за того, что в определенное время через конкретную часть пространства пролетает слишком большое количество самолетов. Более длинный альтернативный маршрут позволяет избежать сложных ситуаций.

Зоны конфликтов и проведение военных учений

Выбирая между скоростью полета и безопасностью судна, находящихся в нем пассажиров, экипажа, в приоритете всегда оказывается второе. Поэтому при прокладывании маршрута специалисты избегают территорий, на которых проходят различные военные конфликты. При этом информация регулярно обновляется, проводятся исследования, чтобы о возможных рисках было известно всем авиакомпаниям. Данным вопросом занимается организация гражданской авиации на международном уровне.

Корректировать маршруты полетов приходится и в случае военных учений. Порой это доставляет неудобства, продлевается время полета, однако испытания необходимы и их не избежать. Единственное, что могут сделать специалисты – возобновить обычные режимы передвижения в ближайшее время после завершения учений.

Стоимость аэронавигации

Каждый раз, когда самолет пролетает над определенным государством, авиакомпания оплачивает использование навигационных служб. Цены везде отличаются, поэтому иногда, чтобы сэкономить на полете, выгоднее преодолеть более длинную дистанцию и не пересекать при этом пространство страны с высокими расценками.

Интересный факт: полет над Германией обойдется дороже, чем над Польшей. Например, маршрут Стокгольм-Пиза выгоднее осуществить, обойдя Германию, несмотря на то, что так он станет длиннее.

Таким образом, самолеты не летают по кратчайшим линиям по нескольким причинам. Необходимо избегать опасных погодных условий, воздушных пробок, зон военных испытаний и конфликтных территорий. Среди других причин – устаревшие маршрутные сети и высокая стоимость аэронавигации в отдельных странах.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Анималов В. С.

Научный консультант редакции сайта «Как и Почему». Свидетельство о регистрации средства массовой информации ЭЛ № ФС 77 – 76533. Издание «Как и почему» kipmu.ru входит в список социально значимых ресурсов РФ.

Как работают самолеты | наука о полете

Реклама

Крис Вудфорд. Последнее обновление: 16 июня 2019 года.

Мы считаем, что можем летать с одной стороны света. другому в считанные часы, но столетие назад это удивительное способность мчаться по воздуху была только что обнаружена. какой братья Райт — пионеры активного полета — из возраст, когда около 100 000 самолетов каждый день взлетают в небо в одних только Соединенных Штатах? Они были бы поражены, конечно, и тоже в восторге.Благодаря их успешным экспериментам с самолет по праву признан одним из величайших изобретения всех времен. Давайте подробнее рассмотрим, как это работает!

Фото: вам нужны большие крылья, чтобы поднять большой самолет, такой как Globemaster ВВС США. Ширина крыльев 51,75 м (169 футов) — это чуть меньше длины тела самолета 53 м (174 фута). Максимальный взлетный вес составляет 265 352 кг (585 000 фунтов), примерно 40 взрослых слонов! Фото Джереми Локка любезно предоставлено ВВС США.

Как летают самолеты?

Если вы когда-нибудь видели, как реактивный самолет взлетает или входит в земля, первое, что вы заметили, это шум двигатели. Реактивные двигатели, которые представляют собой длинные металлические трубы, горящие непрерывно прилив топлива и воздуха намного шумнее (и гораздо мощнее), чем традиционные пропеллерные двигатели. Вы можете подумать, что двигатели являются ключом к летать самолетом, но ты ошибаешься. Вещи могут летать довольно счастливо без двигателей, как планеры (самолеты без двигателей), бумажные самолеты, и действительно скользящие птицы охотно показывают нам.

Фото: четыре силы действуют на самолет в полете. Когда самолет летит горизонтально с постоянной скоростью, подъем с крыльев точно уравновешивает вес самолета, а тяга точно уравновешивает сопротивление. Однако во время взлета или когда самолет пытается подняться в небо (как показано здесь), тяга от двигателей, толкающих самолет вперед, превышает сопротивление (сопротивление воздуха), оттягивающее его назад. Это создает подъемную силу, превышающую вес самолета, который приводит самолет выше в небо.Фото Натанаэля Каллона любезно предоставлено ВВС США.

Если вы пытаетесь понять, как летают самолеты, вам нужно быть ясно о разнице между двигателями и крыльями и разные работы, которые они делают. Двигатели самолета предназначены для его перемещения вперед на высокой скорости. Это делает воздушный поток быстро через крылья, которые сбрасывают воздух к земле, создавая подъемную силу, называемую подъемной силой, которая преодолевает вес и держит его в небе. Так что двигатели двигают самолет вперед, в то время как крылья двигают его вверх.

Фото: третий закон движения Ньютона объясняет, как двигатели и крылья работают вместе, чтобы заставить самолет двигаться по небу. Сила горячего выхлопного газа, стреляющего назад от реактивного двигателя, толкает самолет вперед. Это создает движущийся поток воздуха над крыльями. Крылья толкают воздух вниз, и это толкает самолет вверх. Фото Сэмюэля Роджерса (с добавленными аннотациями объяснением от thatstuff.com) любезно предоставлено ВВС США. Подробнее о работе двигателей читайте в нашей подробной статье о реактивных двигателях.

Как крылья делают подъем?

В одном предложении крылья поднимаются, изменяя направление и давление воздуха, который в них врезается, когда двигатели стреляют по небу.

Перепад давления

Хорошо, значит, крылья — это ключ к тому, чтобы что-то летало, но как они работают? Большинство крыльев самолета имеют изогнутую верхнюю поверхность и более плоскую нижнюю поверхность, что делает форма поперечного сечения, называемая аэродинамическим профилем (или аэродинамическим профилем, если вы британец):


Фото: крыло аэродинамического профиля обычно имеет изогнутую верхнюю поверхность и плоскую нижнюю поверхность.Это крыло на самолет Центурион НАСА на солнечной энергии. Фото Тома Чида любезно предоставлено Центром летных исследований НАСА им. Армстронга.

Во многих научных книгах и на веб-страницах вы прочтете неправильное объяснение того, как аэродинамический профиль, как этот, вызывает подъем. Это выглядит так: когда воздух проникает через изогнутую верхнюю поверхность крыла, он должен перемещаться на дальше на , чем воздух, который проходит под ним, поэтому он должен идти на быстрее на (чтобы преодолеть большее расстояние в то же время). По принципу аэродинамики называется Бернулли закон, быстро движущийся воздух находится под более низким давлением, чем медленно движущийся воздух, поэтому давление над крылом ниже, чем давление ниже, и это создает подъемную силу, которая приводит самолет в движение вверх.

Хотя это объяснение того, как работают крылья, часто повторяется, оно неверно: оно дает правильный ответ, но по совершенно неправильным причинам! Подумайте об этом на мгновение, и вы увидите, что если бы это было правдой, акробатические самолеты не могли бы летать с ног на голову. Если перевернуть самолет, произойдет «сброс» и он рухнет на землю. Не только это, но вполне возможно проектировать самолеты с аэродинамическими поверхностями, которые являются симметричными (смотрящими прямо вниз по крылу), и они все еще производят подъемную силу.Например, бумажные самолеты (и сделанные из тонкого бальсового дерева) создают подъемную силу, даже если у них плоские крылья.

« Популярное объяснение лифта является общим, быстрым, звучит логично и дает правильный ответ, но также вводит в заблуждение, использует бессмысленные физический аргумент и вводит в заблуждение уравнение Бернулли «.

Профессор Хольгер Бабинский, Кембриджский университет

Но стандартное объяснение подъема проблематично и по другой важной причине: воздушный выстрел над крылом не должен идти в ногу с воздухом, идущим под ним, и ничто не говорит о том, что он должен преодолевать большее расстояние в том же направлении. время.Представьте, что две молекулы воздуха достигают передней части крыла и разделяются, так что одна стреляет вверх, а другая свистит прямо под дном. Нет причин, по которым эти две молекулы должны прибыть в одно и то же время на заднем конце крыла: вместо этого они могут встретиться с другими молекулами воздуха. Этот недостаток стандартного объяснения аэродинамического профиля носит техническое название «теория равного транзита». Это просто причудливое название для (неправильной) идеи о том, что воздушный поток разделяется на передней части аэродинамического профиля и снова аккуратно встречается сзади.

Так каково реальное объяснение? Когда изогнутое крыло аэродинамического профиля летит по небу, оно отклоняет воздух и изменяет давление воздуха над и под ним. Это интуитивно очевидно. Подумайте, каково это, когда вы медленно идете по бассейну и чувствуете силу воды, толкающей ваше тело: ваше тело отвлекается поток воды, когда он проталкивается через него, и аэродинамическое крыло делает то же самое (гораздо более резко — потому что это то, для чего оно предназначено). Когда самолет летит вперед, изогнутая верхняя часть крыла понижает давление воздуха непосредственно над ним, поэтому оно движется вверх.

Почему это происходит? Когда воздух проходит по изогнутой верхней поверхности, его естественная склонность — двигаться по прямой линии, но изгиб крыла тянет его назад и вниз. По этой причине воздух эффективно растягивается в больший объем — такое же количество молекул воздуха вынуждено занимать больше места — и это то, что снижает его давление. По совершенно противоположной причине давление воздуха под крылом увеличивается: продвигающееся крыло сдавливает молекулы воздуха перед ним в меньшее пространство.Разница в давлении воздуха между верхней и нижней поверхностями вызывает большую разницу в скорости воздуха (не наоборот, как в традиционной теории крыла). Разница в скорости (наблюдаемая в реальных экспериментах в аэродинамической трубе) намного больше, чем можно было бы предсказать из простой теории (равного транзита). Таким образом, если две наши молекулы воздуха отделяются спереди, то, что идет сверху, попадает в хвостовую часть крыла намного быстрее, чем то, что идет под дном. Независимо от того, когда они прибудут, обе эти молекулы будут ускоряться на вниз, а не на — и это помогает произвести подъем вторым важным способом.

Как крылья аэродинамического профиля создают подъем № 1: аэродинамический профиль разделяет поступающий воздух, понижает давление верхнего воздушного потока и ускоряет оба воздушных потока вниз. Когда воздух ускоряется вниз, крыло (и самолет) движутся вверх. Чем больше аэродинамический профиль отклоняет путь встречного воздуха, тем больший подъем он создает.

Промывка

Если вы когда-либо стояли возле вертолета, вы точно знаете, как он стоит в небе: он создает огромный «поток вниз» (нисходящий поток) воздуха, который уравновешивает его вес.Роторы вертолетов очень похожи на аэродинамические поверхности самолетов, но вращаются по кругу, а не движутся вперед по прямой, как те, что на самолете. Несмотря на это, самолеты создают поток воды точно так же, как и вертолеты — просто мы этого не замечаем. Промывка не так очевидна, но она так же важна, как и с вертолетом.

Этот второй аспект подъема намного легче понять, чем перепады давления, по крайней мере, для физика: согласно третьему закону движения Исаака Ньютона, если воздух придает силу, направленную вверх, самолет должен давать (равный и противоположный) вниз сила в воздух.Таким образом, самолет также создает подъемную силу, используя свои крылья для выталкивания воздуха вниз за собой. Это происходит потому, что крылья не идеально горизонтальны, как вы могли бы предположить, но слегка отклонены назад поэтому они ударили по воздуху под углом . Угловые крылья толкают вниз как ускоренный воздушный поток (сверху над ними), так и более медленно движущийся воздушный поток (снизу над ними), и это вызывает подъем. Поскольку изогнутая верхняя часть аэродинамического профиля отклоняет (отталкивает) больше воздуха, чем прямая нижняя часть (другими словами, намного более резко изменяет траекторию поступающего воздуха), она производит значительно большую подъемную силу.

Как крылья аэродинамического профиля вызывают подъем № 2: изогнутая форма крыла создает область низкого давления над ним (красная), которая создает подъемную силу. Низкое давление заставляет воздух ускоряться над крылом, а изогнутая форма крыла (и более высокое давление воздуха значительно выше потока измененного воздуха) заставляет этот воздух в мощный поток воды, также поднимая самолет вверх. Эта анимация показывает, как различные углы атаки (угол между крылом и входящим воздухом) изменяют область низкого давления над крылом и подъемную силу, которую он делает.Когда крыло плоское, его изогнутая верхняя поверхность создает скромную область низкого давления и небольшую подъемную силу (красная). По мере увеличения угла атаки подъем также резко возрастает — до некоторой точки, когда увеличение сопротивления приводит к срыву плоскости (см. Ниже). Если мы наклоним крыло вниз, мы создадим более низкое давление под ним, и самолет упадет. Основанный на Аэродинамике, общедоступном учебном фильме Военного департамента 1941 года.

Вам может быть интересно, почему воздух вообще падает за крыло.Почему, например, он не попадает в переднюю часть крыла, не изгибается сверху, а затем продолжается горизонтально? Почему есть обратная промывка, а не просто горизонтальная «промывка»? Вспомните наше предыдущее обсуждение давления: крыло понижает давление воздуха непосредственно над ним. Выше, намного выше плоскости, воздух все еще находится под нормальным давлением, которое выше, чем воздух непосредственно над крылом. Таким образом, воздух нормального давления значительно выше крыла выталкивает воздух более низкого давления непосредственно над ним, эффективно «впрыскивая» воздух вниз и позади крыла при обратной промывке.Другими словами, разность давлений, создаваемая крылом, и поток воздуха за ним — это не две отдельные вещи, а все неотъемлемая часть одного и того же эффекта: наклонное крыло аэродинамического профиля создает разницу давлений, которая создает поток вниз, и это приводит к лифт.

Теперь мы можем видеть, что крылья — это устройства, предназначенные для выталкивания воздуха вниз, легко понять, почему самолеты с плоскими или симметричными крыльями (или перевернутые каскадеры) все еще могут безопасно летать. Пока крылья создают нисходящий поток воздуха, самолет будет испытывать равную и противоположную силу — подъемную силу — которая будет удерживать его в воздухе.Другими словами, перевернутый пилот создает определенный угол атаки, который создает достаточно низкое давление над крылом, чтобы держать самолет в воздухе.

Сколько лифта вы можете сделать?

Обычно воздух, проходящий через верх и низ крыла, очень близко повторяет изгиб поверхностей крыла — так же, как вы могли бы следовать ему, если бы вы обводили его контур пером. Но с увеличением угла атаки плавный поток воздуха за крылом начинает разрушаться и становится более турбулентным, что снижает подъемную силу.Под определенным углом (как правило, около 15 °, хотя он и меняется), воздух больше не плавно обтекает крыло. Есть большое увеличение сопротивления, большое снижение подъемной силы, и говорят, что у самолета заглохли. Это немного запутанный термин, потому что двигатели продолжают работать, а самолет продолжает летать; киоск просто означает потерю подъема.

Фото: как самолет глохнет: Вот аэродинамическое крыло в аэродинамической трубе, обращенное к встречному воздуху под крутым углом атаки.Вы можете видеть линии наполненного дымом воздуха, приближающиеся справа и отклоняющиеся вокруг крыла, когда они движутся влево. Обычно линии воздушного потока очень близко соответствуют форме (профилю) крыла. Здесь, из-за крутого угла атаки, воздушный поток отделился позади крыла, и турбулентность и сопротивление значительно возросли. Самолет, летящий таким образом, испытал бы внезапную потерю подъемной силы, которую мы называем «сваливание». Фото любезно предоставлено NASA Langley Research Center.

Самолеты могут летать без крыльев в форме крыльев; вы будете знать, что если вы когда-либо делали бумажный самолетик — и это было доказано 17 декабря 1903 года братьями Райт.Из их оригинального патента «Flying Machine» (патент США № 821393) ясно, что слегка наклоненные крылья (которые они называли «самолетами») являются ключевыми частями их изобретения. Их «самолеты» были просто кусочками ткани, натянутой на деревянный каркас; у них не было профиль аэродинамического профиля. Райтс понял, что угол атаки имеет решающее значение: «В летательных аппаратах того типа, к которому относится данное изобретение, аппарат поддерживается в воздухе из-за контакта воздуха с нижней поверхностью одного или нескольких самолетов, контакт -поверхность, представленная под небольшим углом падения к воздуху.«[Акцент добавлен]. Хотя Райтс были блестящими учеными-экспериментаторами, важно помнить, что им не хватало наших современных знаний аэродинамики и полного понимания того, как именно работают крылья.

Неудивительно, что чем больше крылья, тем больше подъемная сила, которую они создают: удвоение площади крыла (это плоская область, которую вы видите сверху вниз) удваивает и подъем, и его сопротивление. Вот почему гигантские самолеты (как C-17 Globemaster в нашем верхнее фото) есть гигантские крылья.Но маленькие крылья могут также сильно поднять, если они движутся достаточно быстро. Для обеспечения дополнительной подъемной силы при взлете самолеты имеют закрылки на крыльях, которые они могут выдвинуть, чтобы толкать больше воздуха вниз. Подъем и сопротивление варьируются в зависимости от квадрата вашей скорости, поэтому, если самолет идет в два раза быстрее, чем встречный воздух, его крылья производят в четыре раз больше подъема (и сопротивления). Вертолеты производят огромную подъемную силу, быстро вращая лопасти винта (по существу тонкие крылья, которые вращаются по кругу).

Крыло вихрей

Теперь самолет не выбрасывает воздух за собой полностью чистым способом. (Например, вы можете себе представить, как кто-то выталкивает большой ящик с воздухом из задней двери военного транспортера, чтобы он упал прямо вниз. Но это не работает так!) Каждое крыло фактически направляет воздух вниз, делая Прямо за ним вращается вихря (разновидность мини-торнадо). Это немного похоже на то, когда вы стоите на платформе на железнодорожной станции, и высокоскоростной поезд несется мимо, не останавливаясь, оставляя после себя нечто похожее на огромный вакуум для сосания.На плоскости вихрь имеет довольно сложную форму, и большая его часть движется вниз, но не все. В центре движется огромный поток воздуха, но некоторое количество воздуха фактически циркулирует вверх по обе стороны от кончиков крыльев, уменьшая подъемную силу.


Фото: законы Ньютона заставляют самолеты летать: самолет создает восходящую силу (подъемную силу), толкая воздух вниз к земле. Как показывают эти фотографии, воздух движется вниз не в аккуратном и чистом потоке, а в вихре. Помимо прочего, вихрь влияет на то, насколько близко один самолет может лететь за другим, и это особенно важно вблизи аэропортов, где постоянно движется множество самолетов, создавая сложные турбулентные структуры в воздухе.Слева: цветной дым показывает вихри крыльев, созданные настоящим самолетом. Дым в центре движется вниз, но поднимается за концы крыльев. Справа: как выглядит вихрь снизу. Белый дым показывает тот же эффект в меньшем масштабе в тесте аэродинамической трубы. Обе фотографии любезно предоставлено NASA Langley Research Center.

Как самолеты управляют?

Что такое рулевое управление?

Управлять всем — от скейтборда или велосипеда до автомобиля или гигантский реактивный самолет — означает, что вы меняете направление движения.С научной точки зрения, изменение чего-то направление движения означает, что вы изменяете его , скорость — , то есть скорость, которую он имеет в определенном направлении. Четный если он движется с той же скоростью, если вы меняете направление движения, вы меняете скорость. Менять что-то Скорость (включая направление движения) означает, что вы ускоряете ее . Опять же, не имеет значения, останется ли скорость то же самое: смена направления всегда на означает изменение скорости и ускорения.Законы движения Ньютона говорят нам, что Вы можете только ускорить что-то (изменить его скорость или направление движения), используя силу, другими словами, толкать или тянуть его как-то. Короче говоря, если вы хотите управлять чем-то, вам нужно приложить силу к Это.

Фото: управлять самолетом, наклонившись под крутым углом. Фото Бена Блокера любезно предоставлено ВВС США.

Другой способ взглянуть на рулевое управление — думать о нем как о том, чтобы заставить что-то перестать двигаться по прямой и начать движение по кругу.Это означает, что вы должны дать ему то, что называется центростремительная сила. Вещи, которые движутся по кругу (или поворот по кривой, которая является частью круга) всегда что-то действует на них, чтобы дать им центростремительную силу. Если вы управляете автомобилем за поворотом, центростремительная сила возникает из-за трения между четырьмя шинами и дорогой. Если вы ездите на велосипеде по кривой скорости, часть вашей центростремительной силы исходит от шин, а часть от опираясь на поворот. Если вы на скейтборде, вы можете наклонить колоду и наклониться, чтобы ваш вес помог центростремительная сила.В каждом случае вы движетесь по кругу, потому что что-то обеспечивает центростремительную силу, которая тянет вас путь от прямой линии и закруглить в кривой.

Рулевое управление в теории

Если вы находитесь в самолете, вы, очевидно, не соприкасаетесь с землей, откуда же берется центростремительная сила? чтобы помочь вам объехать круг? Точно так же, как велосипедист наклоняется в повороте, самолет «наклоняется» в поворот. Рулевое управление включает в себя и , где самолет наклоняется в одну сторону, а одно крыло опускается ниже другого.Самолет Общий лифт наклонен под углом и, хотя большая часть лифта все еще действует вверх, некоторые теперь действуют вбок. Это боком часть подъема обеспечивает центростремительную силу, которая заставляет самолет вращаться по кругу. Так как есть меньше лифта действуя вверх, есть меньше, чтобы уравновесить вес самолета. Вот почему поворот самолета по кругу сделает он теряет подъемную силу и высоту (высоту), если пилот не делает что-то еще для компенсации, например, используя лифты (поверхности управления полетом в задней части самолета), чтобы увеличить угол атаки и, следовательно, снова поднять подъемную силу.

Рисунок: Когда самолет наклоняется, подъем, созданный его крыльями, наклоняется под углом. Большая часть подъемной силы все еще действует вверх, но некоторые наклоняются в одну сторону, обеспечивая центростремительную силу, которая заставляет самолет поворачиваться по кругу. Чем круче угол крена, тем больше подъемная сила наклонена в сторону, тем меньше направленная вверх сила, чтобы уравновесить вес, и тем больше потеря высоты (если пилот не компенсирует это).

Управление на практике

В кабине есть рулевое управление, но это единственное, что у самолета общего с автомобилем.Как вы управляете чем-то, что летит по воздуху на высокой скорости? Просто! Вы делаете поток воздуха по-разному мимо крыльев с каждой стороны. Самолеты перемещаются вверх и вниз, управляются из стороны в сторону и останавливаются комплексом Совокупность движущихся закрылков называется управляющих поверхностей на передних и задних кромках крыльев и хвоста. Это так называемые элероны, лифты, рули, спойлеры и воздушные тормоза. Теперь полет на самолете очень сложен, и я не пишу здесь руководство для пилота: это просто очень базовое введение в науку о силах и движении, поскольку они относятся к самолетам.Для простого обзора всех различных органов управления самолетом и как они работают, взгляните на статью Википедии о поверхностях управления. Базовое введение НАСА в полет имеет хороший рисунок управление кабиной самолета и как вы используете их для управления самолетом. Вы найдете гораздо больше подробностей в официальном FAA Справочник пилота по авиационным знаниям (глава 6 посвящена управлению полетом).

Один из способов понять управляющие поверхности — это построить себе бумажную плоскость и экспериментировать. Первый, создайте себе базовую плоскость бумаги и убедитесь, что она летит по прямой линии.Затем отрежьте или разорвите заднюю часть крыльев, чтобы сделать некоторые элероны. Наклоните их вверх и вниз и посмотрите, какой эффект они в разных позициях. Наклоните один вверх и один вниз и посмотрите, какая разница. Затем попробуйте сделать новый самолет с одним крылом больше другого (или тяжелее, добавив скрепки). Чтобы заставить бумажный самолет управлять рулем, нужно, чтобы одно крыло создавало большую подъемную силу, чем другое — и вы можете делать это разными способами!

Больше деталей самолета

Фото: братья Райт проявили очень научный подход к полету, дотошно проверяя каждую особенность своих самолетов.Здесь они изображены во время одного из их первых полетов на самолете 17 декабря 1903 года. Предоставлено NASA / Интернет-архив.

Вот некоторые другие ключевые части самолетов:

  • Топливные баки : Вам нужно топливо для питания самолета — его много. Airbus A380 вмещает более 310 000 литров (82 000 галлонов) топлива, что примерно в 25 000 раз больше, чем у обычной машины! Топливо безопасно упакованы в огромные крылья самолета.
  • Шасси : Самолеты взлетают и садятся на прочные колеса и шины, которые быстро втягиваются в ходовую часть (самолет днище) с помощью гидравлических цилиндров для уменьшения сопротивления (сопротивления воздуха) при они в небе.
  • Радио и радар : братья Райт должны были Первопроходец самолета Китти Хок целиком на виду. Это не имеет значения потому что он летел около земли, оставался в воздухе всего 12 секунд, и не было другие самолеты, о которых нужно беспокоиться! В эти дни небо упаковано самолеты, которые летают днем, ночью и в любую погоду. Радио, радар и спутниковые системы имеют важное значение для навигации.
  • Кабины под давлением : давление воздуха падает с высотой над поверхностью Земли — именно поэтому альпинисты должны использовать кислород цилиндры для достижения экстремальных высот.Вершина горы Эверест чуть менее 9 км над уровнем моря, но реактивные самолеты обычно летать на больших высотах, чем это, и военные самолеты летали почти в три раза выше! Вот почему пассажирские самолеты имеют герметичные кабины: те, в которые постоянно подается нагретый воздух чтобы люди могли дышать правильно. Военные летчики избегают проблемы путем носить маски для лица и герметичные костюмы.

Благодарности

Я очень благодарен Стиву Носковичу за неоценимую помощь в уточнении и улучшении моего объяснения о том, как крылья производят подъем.

Узнать больше

На этом сайте

На других сайтах

  • Руководство для начинающих по аэронавтике: отличное введение в науку о полете (особенно для студентов) из Исследовательского центра имени Гленна при НАСА. Рассказывает, как работают самолеты и двигатели, аэродинамические трубы, гиперзвуковые системы, аэродинамика, воздушные змеи и модельные ракеты.
  • Документы Уилбура и Орвиля Райта в Библиотеке Конгресса: довольно много интересных работ и фотографий Райта доступны в Интернете.
  • Flying Machine: Оригинальный патент братьев Райт (поданный 22 марта 1903 года и выданный 22 мая 1906 года) заслуживает прочтения, поскольку он дает представление о полете собственными словами изобретателей. Поскольку в этом патенте описана машина без двигателя, легко понять решающее значение крыльев в «летающей машине» — то, что мы обычно упускаем из виду в эпоху реактивного двигателя!
  • Справочник пилота по авиационным знаниям: Министерство транспорта США / FAA, 2016. К сожалению, даже в этом официальном руководстве приводятся неверные объяснения Бернулли / равных транзитов подъема.

Книги

Для пожилых читателей
Для младших читателей
  • Летная школа: Как летать на самолете за шагом Ник Барнард. Темза и Гудон, 2012. Хорошо иллюстрированный обзор из 48 страниц для детей 8–12 лет.
  • Свидетель: Полет Эндрю Наума. Дорлинг Киндерсли, 2011. Визуальное руководство по истории и технологиям самолетов и других летательных аппаратов.
  • Воздушные и космические путешествия Криса Вудфорда. Факты по делу, 2004 год. Одна из моих собственных книг, эта история об истории полета через воздушные шары, самолеты и космические ракеты.Подходит для детей от 10 до 10 лет.

статей

  • [PDF] Как работают крылья? Профессор Хольгер Бабинский. Physics Education, Volume 38, Number 6, 2003. Более подробное объяснение того, почему традиционное Бернулли объяснение подъема неверно, и альтернативное объяснение того, как крылья действительно работают.

видео

  • Поток воздуха через крыло и Как работают крылья: Эти короткие научные фильмы Хольгера Бабинского показывают движение воздуха через аэродинамическую поверхность (аэродинамический профиль) при изменении угла атаки и доказывают, что классическое простое объяснение Бернулли, основанное на равном времени прохождения, неверно.
  • Как крылья на самом деле работают ?: Краткое описание проекта Bloodhound SSC охватывает ту же тему, что и моя статья, но всего за полторы минуты!
  • Как летают самолеты: длинное (18,5 минуты) видео 1968 года Федерального управления гражданской авиации, в котором объясняются основы полета пилотов.
  • Аэродинамика. В этом старом и безумном учебном фильме военного министерства США 1941 года объясняется теория аэродинамических профилей и то, как они производят разную подъемную силу при изменении угла атаки.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты.

Статьи с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным наказаниям.

Авторские права на текст © Chris Woodford 2009, 2017. Все права защищены. Полное уведомление об авторских правах и условия использования.

Следуйте за нами

Поделиться этой страницей

Сохраните эту страницу на потом или поделитесь ею с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2017) Самолеты. Получено с https://www.explainthatstuff.com/howplaneswork.html. [Доступ (Укажите дату здесь)]

Подробнее на нашем сайте …

,

Как летают самолеты? | Живая наука

Современные авиастроители не особо любят Орвилл и Уилбур. Современные реактивные самолеты используют те же принципы аэродинамики, которые братья Райт использовали в 1903 году, чтобы поднять свой Flyer в воздух.

Но как именно летают самолеты?

Для полета нужны две вещи: тяга и подъемная сила. Тяга — это движение вперед, обеспечиваемое пропеллером или реактивным двигателем. (Между прочим, пропеллер использует те же принципы, которые обсуждались ниже, для создания подъема, но он использует этот подъем для перемещения самолета вперед, а не вверх.)

Лифт

Лифт намного сложнее, чем тяга. На самом деле это очень противоречиво и часто плохо объясняется и во многих учебниках совершенно неверно. Я знаю, потому что некоторые читатели сообщили мне, что оригинальная версия этой истории была неточной. Я попытался исправить это после исследования противоречивых «экспертных» взглядов на все это.

Крыло самолета имеет специальную форму, называемую аэродинамическим профилем, которая выпирает больше сверху, чем снизу. Эта форма помогает в полете, но не является ключевым.Если бы все это было так, то как могли бы некоторые самолеты летать вверх ногами?

Когда воздух встречается с крылом, он распадается на два потока, верх и низ. Вы часто будете слышать, что два потока снова встречаются сзади, как показано здесь, потому что воздух, проходящий через верх, должен перемещаться дальше, чем воздух, проходящий под ним, поэтому он вынужден двигаться быстрее. Но на самом деле воздушные посылки не объединяются каким-либо единообразным образом.

Воздух, движущийся быстрее, имеет меньшее давление (это часто называют принципом Бернулли).Поэтому часто говорят, что область над крылом имеет меньшее давление, чем область под крылом, создавая подъемную силу.

Опять же, реальность более сложна, и законы Ньютона обычно предпочтительнее, чем принцип Бернулли, для объяснения подъема. Идея Ньютона такова: воздух, проходящий через крыло, в конечном счете отклоняется вниз на угол крыла, и Ньютон сказал, что должна быть равная и противоположная реакция, поэтому крыло движется вверх.

Если вы почти устали, будьте уверены, что даже инженеры все еще спорят о деталях того, как летают самолеты и какие условия использовать.

Drag

Против полета действуют две силы: сопротивление и сила тяжести.

Крыло должно быть спроектировано не только для подъема, но и для минимизации трения при прохождении воздуха, который вызывает сопротивление.

Каждый самолет имеет определенную скорость взлета, при которой подъем преодолевает силу тяжести. Эта критическая скорость изменяется в зависимости от того, сколько весит конкретный полетный пакет. Между тем, воздушный винт самолета или реактивный двигатель должны работать, чтобы обеспечить достаточную тягу, чтобы преодолеть сопротивление.

Хотите знать, почему профиль был наклонен в некоторых наших примерах? Это простой способ увеличить расстояние, которое должен пройти воздух. Пилоты могут вносить небольшие изменения в закрылки крыла, эффективно изменяя угол наклона крыла по отношению к ветру. Более наклонное крыло позволяет создавать больший подъем на более низкой скорости.

Еще один способ думать об этом: когда-нибудь «вылетел» из окна машины? Попробуйте это когда-нибудь. Если ваша рука (аэродинамическая поверхность) выровнена, она движется по воздуху в горизонтальной плоскости.Наклоните передний край вашей руки вверх, и ветер поднимется снизу, и ваша рука поднимется.

Однако наклоните крыло самолета слишком далеко или слишком сильно уменьшите скорость, и вдоль верхней части крыла образуются очаги турбулентности. Подъемная сила уменьшается, и самолет входит в стойло и падает с неба. Обученные пилоты могут восстановить самолет из сваливания, указывая носом вниз и увеличивая скорость самолета, пока подъем не выиграет снова.

Flight Technology

Летающие животные

,

Почему самолеты летают?

Почему летают самолеты?

Как поклонник авиации, вы прочитали много интересных статей об авиационном мире, но знаете ли вы основные принципы полета? Почему летают самолеты? Мы объясним 4 основные силы полета.

На самолеты среднего полета действуют 4 основные силы: тяга, сопротивление, сила тяжести и подъемная сила. Если все эти силы сбалансированы, самолет остается в воздухе. Каждая из этих сил имеет решающее значение для полета самолета.

Airplanes

Лифт создается, когда изогнутое крыло аэродинамического профиля летит по небу, отклоняет воздух и изменяет давление воздуха над и под ним.Это интуитивно очевидно. Подумайте, каково это, когда вы медленно идете по бассейну и чувствуете силу воды, толкающую ваше тело: ваше тело отклоняет поток воды, когда оно проталкивается через него, и крыло аэродинамического профиля делает то же самое (гораздо более резко) Потому что это то, для чего он предназначен). Когда самолет летит вперед, изогнутая верхняя часть крыла понижает давление воздуха непосредственно над ним, поэтому оно движется вверх.

Тяга — это сила, которая перемещает летательный аппарат в направлении движения.Он создается с винтом, реактивным двигателем или ракетой. Воздух втягивается, а затем выталкивается в противоположном направлении. Одним из примеров является бытовой вентилятор.

Перетаскивание — это сила, которая действует противоположно направлению движения. Перетаскивание вызвано трением и перепадами давления воздуха.

Гравитация — это сила, действующая в направлении вниз — к центру Земли.

На Youtube-канале MinutePhysics есть потрясающее видео, в котором рассказывается, как летают самолеты.Проверьте это!

Еще одно видео о наиболее эффективных самолетных двигателях. Это объясняет, почему они становятся больше с каждым поколением самолетов.

,
Как летают самолеты: тяга и сопротивление — как работают самолеты

Бросьте камень в океан, и он погрузится в бездну. Забрось камень со стороны горы, и он тоже резко упадет. Конечно, стальные корабли могут плавать, и даже очень тяжелые самолеты могут летать, но для достижения полета вы должны использовать четыре основные аэродинамические силы: подъемную силу, вес, тягу и сопротивление. Вы можете думать о них, как о четырех руках, удерживающих самолет в воздухе, каждая из которых движется со своего направления.

Сначала давайте рассмотрим тягу и сопротивление. Тяга , вызванная пропеллером или реактивным двигателем, — это аэродинамическая сила, которая толкает или тянет самолет вперед через пространство. Противодействующая аэродинамическая сила составляет , сопротивление , или трение, которое сопротивляется движению объекта, движущегося через жидкость (или неподвижного в движущейся жидкости, как это происходит, когда вы летите на воздушном змее).

Если вы высунете руку из окна автомобиля во время движения, вы увидите очень простую демонстрацию сопротивления на работе.Уровень сопротивления, который создает ваша рука, зависит от нескольких факторов, таких как размер вашей руки, скорость автомобиля и плотность воздуха. Если бы вы замедлились, вы бы заметили, что сопротивление на вашей руке уменьшится.

Мы видим еще один пример снижения сопротивления, когда наблюдаем за лыжниками на Олимпиаде. Всякий раз, когда они получают шанс, они сжимаются в тесном приседе. Делая себя «меньше», они уменьшают сопротивление, которое они создают, что позволяет им быстрее прыгать вниз по склону.

Пассажирский реактивный самолет всегда убирает свое шасси после взлета по той же причине: чтобы уменьшить сопротивление. Так же, как горнолыжник, пилот хочет сделать самолет как можно меньше. Величина сопротивления, создаваемого шасси реактивного самолета, настолько велика, что на крейсерских скоростях механизм будет разорван прямо с самолета.

Для выполнения полета тяга должна быть равна или превышать сопротивление. Если по какой-либо причине величина сопротивления станет больше тяги, самолет замедлится.Если тяга увеличивается так, что она превышает сопротивление, самолет ускоряется.

На следующей странице мы обсудим вес и подъем.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены. Карта сайта